

3EP3H-04/136

Development of light detector using superconducting thermometer for rare event search in scintillating CaMoO₄ crystal

S.J. Lee^{1,2}, Y.S. Jang¹, 1.H. Kim¹, M.S. Kim¹, S.K. Kim², Y.H. Kim¹, M.K. Lee¹, Y.N. Yuryev^{1,2}

¹Korea Research Institute of Standards and Science (KRISS), ²Seoul National University

Neutrinoless Double Beta Decay $(0v\beta\beta)$

$$(A, Z) \rightarrow (A, Z+2) + e^- + e^-$$

Measurement of half-life of $0_V \beta \beta$ will confirm the <u>Majorana</u> nature of neutrino and yield the <u>effective neutrino mass</u>.

CaMoO₄ Crystal Scintillator

- : One of the most promising material to study $0\nu\beta\beta$
- 1) $^{100}\mbox{Mo}$: one of the highest transition energy (3,034 keV) \$9.82% natural abundance
- 2) Scintillation light can be used for the active rejection of alpha background

Combination of Metallic Magnetic Calorimeter (MMC) and Transition Edge Sensor (TES) for the detection of alpha particles from ²⁴¹Am

1 cm X 1 cm X 0.6 cm radiopure crystal

MMC Measurement (Heat Signal)

Sensor material - Au:Er (800 ppm)

Alpha signal (5.5 MeV) and gamma signal (60 keV) were measured simultaneously.

alpha spectrum

- The feasibility of sizing up the crystal is guaranteed by heat capacity analysis.
- Larger sensor material can be used for higher sensitivity.
- 100 times larger crystal will be tested soon.

- Due to low energy threshold, it can be simultaneously used for dark matter search.

TES Measurement (Light Signal)

Silicon wafer as a scintillation light absorber

- intrinsic and double-polished for small heat capacity
- cut into 10 mm X 10 mm X 0.3 mm

TES in the middle

- bilayer of Ti/Au (Ti: 20 nm, Au: 100 nm)
- area: 1.2 mm X 0.4 mm

Electrode: bilayer of Ti/Au (Ti: 200 nm, Au: 50 nm)

- area: 0.5 mm X 0.5 mm

Transition temperature (Tc) : \sim 120 mK, width (Δ T) : \sim 4 mK

- Tc and ΔT is a function of magnetic field applied for MMC
- ΔT increased to larger than 10 mK at 1.5 mT

Optimal condition of magnetic field should be found.

Simultaneous Measurement of MMC & TES

- No coincidence event between heat and light signal found.
- Instead, alpha events hitting the crystal after hitting the silicon wafer were observed.
- Main reasons for non-observation of coincidence events : high transition temperature and collimation mistake
- Solution : lowering transtion temperature total heat capacity (silicon wafer + TES + electrode) at 120 mK : $\sim 3.2 \times 10^{-11}$ J/K, at 80 mK : $\sim 1.0 \times 10^{-11}$ J/K major heat capacity in silicon wafer
- One more thing to consider:

 Decay time constant of
 scintillation was measured to be
 ~ 340 μs at 20 mK by CRESST

On-going and future experiments

- Ti/Au TES with Tc of about 80 mK has been fabricated on a silicon wafer.
- Dual-channel (heat and light) sensor with an enriched large crystal (⁴⁰Ca¹⁰⁰MoO₄) will form a detector unit for the AMORE collaboration