Measurement of unbound excited state of 24O

K.Tshoo
Seoul National Univ., Korea

INPC 2010
Vancouver, Canada, 4-9, July, 2010

R405n collaboration

Department of Physics and Astronomy, Seoul National University, 599 Gwanak, Seoul 151-742, Korea
1Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551, Japan
2RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
3LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, 14050 Caen cedex, France
4Department of Physics, Rikkyo University, 3 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
5Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan
6Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
7Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
8Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O.Box 51, H-4001 Debrecen, Hungary
9School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
New Magic number

\[S_n(N,Z) = B(N,Z) - B(N-1,Z) \quad N=\text{odd}, \ Z=\text{even} \]

Traditional magic number
Disappear traditional magic number
Appear NEW magic number
No γ-transitions have been observed for $^{23-24}$O.

The first excited state of $^{23-24}$O lies above the neutron separation energy (unbound state).

The relative high excited energy, which has the lower limit of 4.09 ± 0.13 MeV, in the neighboring even-even nuclei provides a signature of the magic property at $N=16$.

Theoretical predictions

The first excited state of 24O will be attributed to the promotion of a neutron from the $\nu_1 s_{1/2}$ orbital to the $\nu_0 d_{3/2}$ orbital, and the possible spin-parity values are 1^+ and 2^+ with the configuration of $(\nu_1 s_{1/2})^1 \otimes (\nu_0 d_{3/2})^1$.

The theoretical calculations predict that the first 2^+ excited state will lie below the 1^+ state.

The shell model code : NUSHELL@MSU, B.A. Brown and W.D.M. Rae, MSU-NSCL report (2007)
Recently, the first excited state of 24O was studied by C. R. Homan in the nucleon removal reaction of a radioactive 26F beam. (C.R. Homan et al., Phys. Lett. B, 672, 17-21 (2009))

$E_{\text{decay}} (2^+) = 630\pm40 \text{ keV}$

The first resonance state, inferred to be the 2^+ state, was not clearly identified due to the possible near proximity of the first 2^+ and 1^+ states in 24O. Since the position of the first 2^+ excited state is one of the indicators for magic nuclei, unambiguous identification of this state is essential to confirm that 24O is a double magic nucleus.
Comparison between the previous and present experiments

<table>
<thead>
<tr>
<th></th>
<th>Previous (MSU)</th>
<th>Present (RIKEN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Beam</td>
<td>26F</td>
<td>24O</td>
</tr>
<tr>
<td>Secondary Target</td>
<td>Be</td>
<td>Liquid hydrogen</td>
</tr>
<tr>
<td>Reaction</td>
<td>nucleon removal reaction</td>
<td>(p,p') reaction</td>
</tr>
</tbody>
</table>

Reaction

$$^{26}\text{F} + \text{Be} \rightarrow ^{25}\text{O} + p \rightarrow ^{24}\text{O}^* + n \rightarrow ^{23}\text{O} + n$$

DWBA calculation

Program DWBA70, R. Schaeffer, J. Raynal, unpublished; Extended version DW81, J.R. Comfort, unpublished.

$$^{24}\text{O}(p,p')^{24}\text{O}^*, E_p = 67 \text{ MeV}$$

Projectile-nucleon effective interaction: M3Y

Optical potential: KD02

Shell model interaction: USDa

Experiment at RIKEN

40Ar beam @ 95 MeV/u, ~50 pnA
Secondary beam identification (1)

Diagram:
- PPAC1 and PPAC2
- D2 and D1
- F1, F2, F3
- Plastic scintillator and SSD
- Production target
- Beam swinger
- Beam swinger at F0
- 40Ar beam @95MeV/u, ~ 50pnA

Equations:
- $v \sim \frac{1}{TOF}$
- $\Delta E \sim \frac{Z^2}{v^2}$

Heat map:
- TOF from F0 to F2 (nsec)
- Isotopes: Na, Ne, F, O, N
Secondary beam identification (2)

\[\nu \sim \frac{1}{\text{TOF}} \quad \Delta E \sim \frac{Z^2}{\nu^2} \quad BQ = \frac{A}{Ze \gamma m_u} \frac{\nu}{c} \]

![Diagram of beam interaction and particle identification](image)

- **D1**: Production target
- **D2**: Beam swinger
- **PPAC1** and **PPAC2**: Plastic scintillator and SSD

\[^{40}\text{Ar beam \textcolor{orange}{\@95MeV/u, \sim 50pnA}}\]
Experimental Setup

- Neutron counter array
- Liquid hydrogen target system, NDCs, DALI, MDC
- Dipole magnet
- Veto counter
- Hodoscope
- FDC
- LH$_2$
- DALI NaI array
- NDC1
- NDC2
- Neutron counter array
- Dipole magnet
Nuclear charge identification

Diagram showing a neutron counter, veto counter, hodoscope, FDC, dipole magnet, MDC, LH₂, DALI NaI array, NDC1, and NDC2. A graph shows the relationship between TOF (arbitrary unit) and ΔE/Δx (arbitrary unit), with peaks at Z = 7, Z = 8, and Z = 9.
Isotopic identification of the oxygen isotopes
Neutron counter analysis (Light output)
Neutron counter analysis (Timing)

\[\text{Missing mass} = \left[(E_p - E_n + M_{Li})^2 - (P_p^2 + P_n^2 - 2P_pP_n \cos \theta) \right]^{1/2} - M_{Be} \]
Reconstruction of the decay energy using the invariant mass method

\[E_{\text{decay}} = \sqrt{(E_f + E_n)^2 - (P_f + P_n)^2 - (M_f + M_n)} \]
Decay energy of $^{22}\text{O} + n$

$E_{\text{decay}} = 45 \pm 2 \text{ keV}$

$E_{\text{decay}} = 46 \pm 3 \text{ keV}$

RIKEN (Preliminary)

Decay energy of 23O + n

$E_{\text{decay}} = 610^{+72}_{-53}$ keV at $\Gamma = 5.6$ MeV

Yellow histogram: simulated resonant contribution.
Dashed line: nonresonant contribution (background described by Maxwellian distribution).
Solid line: sum of the yellow histogram and the background.

Present (RIKEN) | Previous (MSU)
$E_{\text{decay}} = 610^{+72}_{-53}$ keV | $E_{\text{decay}} = 630\pm40$ keV
The 2^+_1 energies

The high 2^+_1 excited energy of 24O shows the property of double magic nucleus.

New observed higher excited state in 24O
We have investigated the unbound excited state of 24O using the invariant mass method in the 23O+n decay channel via the proton inelastic scattering of 24O in inverse kinematics. We have observed the first 2^+ excited state of 24O at the decay energy $E_{\text{decay}} = 610\pm\frac{72}{53}$ keV (preliminary) above one neutron separation energy and confirmed the previous result of the state (E_{decay}(MSU)=630±40 keV). The corresponding excitation energy is 4.70 ± 0.15 MeV adopting $S_n(^{24}$O)=4.09±0.13 MeV (Taken from B.Jurado*).

Such a high excitation energy of the first 2^+ state comparing with those in the neighboring even-even nuclei strongly indicates the property of double magic nuclei.

Thank you!
Extra slides
Energy dependent Breit-Wigner line-shape

\[\sigma \sim \frac{\Gamma_1(E)\Gamma_l(E_R)}{(E - E_R + \Delta_l)^2 + \Gamma_l(E)^2/4} \]

\[\Gamma_1(E) = \Gamma_l(E_R) P_l(E)/P_l(E_R) \]

\[\Delta_l(E) = 2 \Gamma_l(E_R)(S_l(E) - S_l(E_R))/P_l(E_R) \]

R.G. Thomas,
Reviews of Modern Physics 30, part1, (1958)

\[\Gamma(E_R) = 1 \text{ MeV} \]