Extraction of $\Lambda\Lambda$ scattering length

C. J. Yoon,

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

We have determined $\Lambda\Lambda$ scattering parameters from a $\Lambda\Lambda$ invariant mass spectrum that was obtained by the $^{12}\mathrm{C}(K^-,K^+\Lambda\Lambda)$ reaction at the KEK Proton Synchrotron (KEK-PS E522). In a framework of the Watson's procedure, the value obtained scattering length $a_{\Lambda\Lambda}=-0.10^{+0.10}_{-2.47}\pm0.04$ fm, and effective range $r_{\Lambda\Lambda}=13.90^{>16.10}_{-13.90}\pm9.48$ fm is the most consistent with the Nijmegen Soft Core (NSC97) models. However, the Nijmegen Hard Core ND (G-matrix), the Extended Soft Core 2000 (ESC00) model predictions are out of two-standard deviations of the determined scattering parameters. Figure 1 presents one-standard deviation band of the determined $\Lambda\Lambda$ -scattering parameter in a $(a_{\Lambda\Lambda}, r_{\Lambda\Lambda})$ plane.

Fig 1. One standard deviation region $(\chi^2/\text{dof.} \leq (\chi^2_{min}/\text{dof.}) + 1)$ of the experimentally determined $\Lambda\Lambda$ scattering parameter.