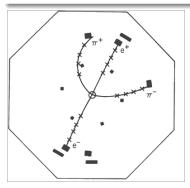
# Charming Mystery - From November Revolution to NRQCD -

Kwangzoo Chung

WCU Seminar, Seoul National University


October 13th, 2009

1/17

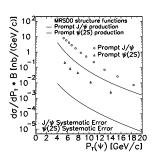
## Prologue

#### November Revolution

- Discovery of  $J/\psi$  SLAC and BNL independently on 11 November 1974
- 1976 Nobel Prize in Physics: Burton Richter and Samuel Ting




#### Charmonium


- Bound states of charm quark and anti-charm quark
- $\eta_c$  (2.980 GeV/ $c^2$ ),  $J/\psi$  (3.097 GeV/ $c^2$ ),  $\psi(2S)$  (3.686 GeV/ $c^2$ ), etc.
- $\psi(2S)$  (or  $\psi'$ ): the first excited state of  $J/\psi$ , negligible feed-down from higher states

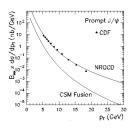
### Introduction

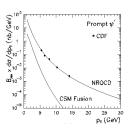
#### $\psi$ Production in CDF Run I

- ullet Extracted Prompt  $\psi$  Production using Silicon Vertex Detector
- Unexpectedly large  $J/\psi$  and  $\psi(2S)$  prompt cross section
- $\psi(2S)$  anomaly prompt cross section is higher than theoretical predictions based on the color-singlet model by a factor of  $\sim 50~(\sim 6~{\rm for}~J/\psi)$






3 / 17


CDF Run I,  $J/\psi$  and  $\psi(2S)$  Production Phys. Rev. Lett. 79, 572 (1997)

### Introduction

#### NRQCD and $\psi$ polarization

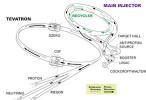
- $\bullet$  CDF Run I measurement of  $J/\psi$  and  $\psi(2S)$  production cross sections prompted the development of NRQCD models
- Non-Relativistic QCD (NRQCD) An effective field theory
- Includes color-octet states
- Adjustable parameters (color-octet matrix elements) but still restrictive enough to have predictive power, e.g., that all vector mesons should be transversely polarized at large p<sub>T</sub>.



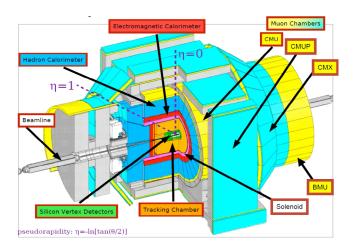


4 / 17

Prompt cross section at CDF Run I with NRQCD fit and color-singlet model prediction


### Tevatron - Fermi National Accelerator Laboratory

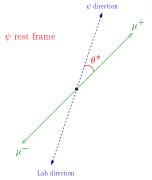



- The Energy Frontier
- 1000 superconducting magnets at -268 °C
- Proton-Antiproton: 1 TeV, 0.9999999954 c
- Collision at 2 TeV
- Discoveries: the bottom quark(1977), the top quark(1995), and the tau neutrino (2000)

- Accelerator Chain
- Linear Accelerator: ~ 500 feet, up to 400 MeV
- Booster: circular accelerator, up to 8 GeV
- Main Injector
- Antiproton Source: proton beams on nickel
- Fixed Target Area, CDF, DZero Detector

#### FERMILAB'S ACCELERATOR CHAIN




### Collider Detector at Fermilab II



• A general purpose forward-backward symmetric detector

6 / 17

# Polarization Measurement in $\psi(2S) \rightarrow \mu^+\mu^-$



#### Decay angle distribution

• The angle between the  $\mu^+$  direction in the  $\psi(2S)$  rest frame and the  $\psi(2S)$  direction in the lab frame.

$$\frac{d \; \Gamma}{d \; \cos \; \theta^*} \propto \frac{3}{2 \left( lpha + 3 
ight)} \left( \; 1 + lpha \; \cos^2 \! heta^* 
ight)$$

- The polarization parameter  $\alpha$ 
  - $\alpha = +1$ : helicity  $\pm 1$  or fully transverse.
  - $\alpha = -1$ : helicity 0 or fully longitudinal.

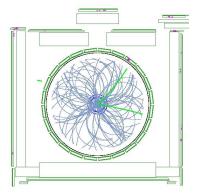
# Polarization Measurement in $\psi(2S) \rightarrow \mu^+\mu^-$

### Template method

Main idea: Compare the observed  $\cos \theta^*$  distribution with fully polarized(transverse/longitudinal)  $\cos \theta^*$  distribution from Monte Carlo samples.

- Realistic MC samples are corrected for the detector acceptance, efficiency, and the trigger efficiencies.
- The polarization is obtained using a  $\chi^2$  fit of the data to a weighted sum of T & L templates.

#### Polarization fit


- The data events are histogrammed in  $\cos \theta^*$ , with bin widths of 0.1
- The Poisson likelihood  $\chi^2$ :  $\chi^2 = -2 \ln \lambda$ , where  $\lambda$  is the likelihood ratio
- Pearson's  $\chi^2$  following Gaussian distribution:  $\chi^2 = \sum_i (n_i y_i)^2 / y_i$ , where  $n_i$  is the number of events in the i th bin and  $y_i$  is the number of events predicted by the model to be in the i th bin

K. Chung WCU Seminar Oct. 13th. 2009

8 / 17

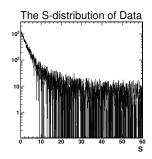
### **Event Selection**

- 800pb<sup>-1</sup> CDF Run II data collected by the track based dimuon trigger.
- $\psi(2S) \to \mu^+ \mu^-$ ,  $5 \le p_{\scriptscriptstyle T}(\mu^+ \mu^-) < 30 \text{ GeV}/c, |y| < 0.6$ .

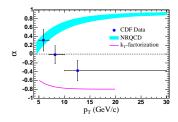


 Muon candidates reconstructed in the Central Outer Tracker(COT) and Central Muon detectors(CMU,CMUP).
 Additionally, the Silicon Vertex Detector(SVX II) information is used.

• Minimum  $p_T(\mu)$  1.75 GeV/c to avoid trigger turn-on.


# Prompt Vs. B-decay

### Impact parameter significance cut


- $\psi(2S)$  from decays of B-hadrons have a different average polarization than prompt V mesons.
- The long B lifetime  $\Rightarrow \psi(2S)$  from B decay lead to muons that don't point to the primary vertex and can be separated by an impact parameter significance cut.

$$S = \left(\frac{d_0(\mu^-)}{\sigma_{d_0(\mu^-)}}\right)^2 + \left(\frac{d_0(\mu^+)}{\sigma_{d_0(\mu^+)}}\right)^2$$

• S < 8 for the prompt and S > 16 for the B-decay: based on the S - distribution of the data and a Monte Carlo sample.



# Result - $\psi(\mathbf{2}\mathbf{S})$ Polarization



$$\eta_B = 0.19 \pm 0.09 \pm 0.01$$
 or  $\alpha_B = 0.36 \pm 0.25 \pm 0.03$ 

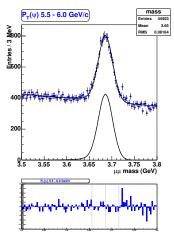
| $p_T[\text{GeV}/c]$ | $< p_T > [\text{GeV}/c]$ | $\eta_{prompt}$            | $\alpha_{prompt}$            | $\chi^2$ /d.o.f |
|---------------------|--------------------------|----------------------------|------------------------------|-----------------|
| 5 - 7               | 6.2                      | $0.210 \pm 0.086 \pm 0.01$ | $+0.306 \pm 0.235 \pm 0.027$ | 14.4/12         |
| 7 - 10              | 7.9                      | $0.327 \pm 0.089 \pm 0.01$ | $+0.014 \pm 0.202 \pm 0.023$ | 18.7/14         |
| 10 - 30             | 11.6                     | $0.558 \pm 0.136 \pm 0.01$ | $-0.433 \pm 0.224 \pm 0.016$ | 26.8/16         |

Prompt  $\psi(2S)$  polarization

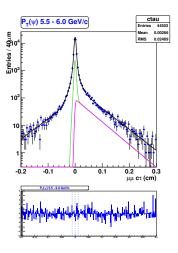
Contradictory to the prediction of NRQCD factorization

K. Chung WCU Seminar Oct. 13th, 2009 11 / 17

# $\psi(2S)$ Production Cross Section


 $p_{T}$  dependent differential cross section

$$\frac{d\sigma(\psi(2S))}{dp_{\scriptscriptstyle T}} = \frac{N(\psi(2S))}{A \cdot \epsilon \cdot \int \mathcal{L} dt \cdot \Delta P_T}$$


- $\psi(2S) \to \mu^+\mu^-$  decays are reconstructed by selecting events with two oppositely charged muon candidates
- 1.1 fb<sup>-1</sup> of data corresponding to an effective integrated luminosity of 954.1pb<sup>-1</sup>
- Simultaneous unbinned maximum likelihood fit in mass and proper decay length is performed to extract the  $\psi(2S)$  events from the background and separate the prompt and B-decay  $\psi(2S)$  yield

ing WCU Seminar Oct. 13th, 2009 12 / 17

## Example - Fit Projection



 $\chi^2/ndf = 71.4/100, \chi^2$ -prob.= 0.99



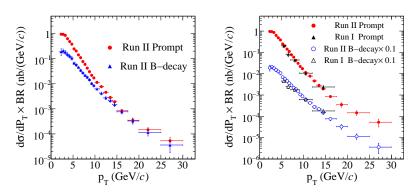
$$\chi^2/ndf = 120.0/121, \chi^2$$
-prob.= 0.51

K. Chung WCU Seminar

# Acceptance, Efficiencies, and Luminosity

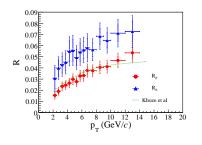
#### Acceptance

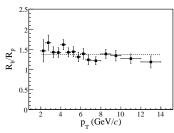
- Acceptance is sensitive to the  $\psi(2S)$  polarization parameter  $\alpha$ .
- For prompt decay, averaged  $\alpha = 0.01 \pm 0.13$  is used to determine the acceptance.
- For *B*-decay, the measured *B*-decay polarization  $\alpha_{eff} = 0.36 \pm 0.25 \pm 0.03$  is used.


#### Efficiencies

- Trigger efficiency the data based trigger efficiencies, CDF 7314
- Reconstruction efficiency Product of tracking and muon selection efficiencies measured in CDF data,  $\varepsilon_{reco} = 0.798 \pm 0.025$ .

#### Luminosity


- $\bullet$  1.1 fb<sup>-1</sup> data set of the dimuon trigger path (JPSI\_CMUCMU1.5 or JPSI\_CMUCMU1.5\_DPS).
- The luminosity for the dynamically prescaled trigger path is calculated using DPS Accounting tool.
- The effective luminosity:  $954 \text{ pb}^{-1}$ .


## Result - Prompt and *B*-decay $\psi(2S)$ Cross Section



- Left: Prompt and B-decay production cross section distribution versus  $p_T$ .
- Right: The same data with the Run I points included.

# Cross section Ratio of $\psi(2S)$ to $J/\psi$





- The differential cross section ratio of  $\psi(2S)$  to  $J/\psi$  as a function of  $p_{\tau}$  for prompt  $(R_p)$  and B-decay events  $(R_b)$ .
- Prompt  $\psi(2S)$  production has a harder  $p_{\scriptscriptstyle T}$  spectrum than that for  $J/\psi$  production.
- The increase in the ratio at larger  $p_T$  reflects the slope difference.
- The ratio of *B*-decay to prompt ratios  $R_b/R_p$  is independent of  $p_{\tau}$  ( $\chi^2/n.d.f.$  = 13/14).

### Conclusion

# The $\psi(2S)$ production cross section and the polarization have been measured with 1 fb $^{-1}$ data

#### $\psi(2S)$ Polarization

- Improved with an order of magnitude higher statistics
- Consistent with being zero in the p<sub>T</sub> region
- Contradictory to the prediction of NRQCD factorization

#### $\psi(2S)$ Production Cross Section

- Extended with good statistics out to 30 GeV/c
- The increase in the integrated cross section from Run I can be explained by the changes in the PDF at higher collision energy
- Important input for an update of the matrix elements in NRQCD

A successful description of the cross section in the perturbative  $p_T$  region with matching the polarization measurement would demonstrate a good understanding of the charmonium hadroproduction mechanisms