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The top quark

• The heaviest known fundamental particle
• Decays as a free quark – no other quark does this!
• Only Tevatron can make it until now
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Why we measure top quark mass

• SM Higgs Mass was 
constrained by Mtop and MW
through loop correction of  W 
mass

• Precision top quark mass 
measurement

Predict SM Higgs mass
Constraints for physics beyond 
standard model

X ??
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Tevatron and CDF II detector

MuonSVX

COT

EM cal

Had cal

Tevatron is p pbar collider with 
sqrt(s)=1.96TeV

Still the highest energy in the world

Still only one machine to generate top quark
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Tevatron Luminosity

• Integrated luminosity >5fb-1 

• Luminosity is still accelarating
• Now ~ 2fb-1/year
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Top quark production and decay

• Tops always decay via t->Wb
• Event topology then depends 
on W decays

• Hadronic (quarks)
• Leptonic (electron or 
muon + neutrino)

• This analysis uses the 
Lepton+Jets channel(30%)

• One W decays to hadrons, 
the other to leptons
• Signature = 4 quarks, 1 
charged lepton + 
undetected neutrino

And Dilepton(5%)
•Both W decay to leptons
•Signature = 2b quarks, 2 
charge lepton+2 
undetected
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Why Mtop is difficult

• With 4 (and only 4 jets!), there 
are 12 different ways of assigning 
jets to partons at hard scattering

• Neutrino from W decay

• Non-negligible backgrounds

• Jets are difficult
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Why Mtop is difficult

• With 4 (and only 4 jets!), there 
are 12 different ways of assigning 
jets to partons at hard scattering

• Neutrino from W decay

• Non-negligible backgrounds

• Jets are difficult

• Jet to parton
assignment 

• (ISR/FSR, 
splitting, merging)

• Use b-tagging to 
reduce 
combinatorics
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Why Mtop is difficult

• With 4 (and only 4 jets!), there 
are 12 different ways of assigning 
jets to partons at hard scattering

• Neutrino from W decay

• Non-negligible backgrounds

• Jets are difficult

• Momentum imbalance 

•All of system affect –
large uncertainty

•Dileton channel is even 
worse (under-constraint 
system)
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Why Mtop is difficult

• With 4 (and only 4 jets!), there 
are 12 different ways of assigning 
jets to partons at hard scattering

• Neutrino from W decay

• Non-negligible backgrounds

• Jets are difficult

• b-tagging reduce 
background 
significantly 

• check the kinematics

• Use independent 
estimates of 
background rate
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Why Mtop is difficult

• With 4 (and only 4 jets!), there 
are 12 different ways of assigning 
jets to partons at hard scattering

• Neutrino from W decay

• Non-negligible backgrounds

• Jets are difficult

• Hard work (gamma 
jet balance)

• Use resonance of 
hardronic decay W in 
lepton jet 
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σc = unit of combined nominal CDF 
JES calibration uncertainty

Jet Energy Scale
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Top mass reconstruction in the lepton+jet channel

• Lepton jet channel is overconstraints system

What we don’t knowWhat we know

6 final-state particles *4 vectors = 24 needed 24 unknowns

4 jets and charged lepton 4-vectors = 4*5 = 20 4 unknowns

We know the mass of the neutrino = 1 3 unknowns

Transverse components of pν from momentum conservation = 2 2 constraints

We know the W mass quite well (both of them) = 2 1 unknown

Require mtop = manti-top = 1 0 unknowns
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Reconstructed top mass (lepton jet)

Reconstructed top quark 
mass is highly correlated 
with true top quark mass 

but not the same
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JES (in situ correction)

• JES is dominant 
systematic in the top quark 
mass measurement

• We can calibrate JET using 
the dijet mass of W decay 
because we very precisely 
know the W mass

Dijet 
mass
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> 20> 20MET (GeV)

> 20> 20e ET (GeV) or μ PT (GeV/c)

> 20> 12Jet ET (GeV) (jet 4)

< 20anyJet ET (GeV) (extra jets)

< 9.0< 9.0χ2 cut

> 20

==1

1-tag

> 20

>=2

2-tag

Jet ET (GeV) (jets 1-3)

B-tags
• Use b-tagging in SVX to 
reduce combinatorics 
and increase S:B

• Divide events into 2 
exclusive subsamples
with different S:B and 
different reconstructed 
mass shapes

Top Event Tag Efficiency: 60%

False Tag Rate (per jet): 0.5%

Event Selection (lepton+jet)
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Background in the lepton jet
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Building likelihood in the lepton jet
• We build probability for top quark mass using reconstructed top 

mass and Jet energy scale using dijet mass

( ; )jjP JES mΔ

,( , ; , ) ( ; ) ( ; )reco reco
topt jj top t jjP m m M JES P m M JES P m JESΔ = Δ × Δ

• We use arbitarary function to build probability density function
• We assume no correlation between reconstructed top mass and 

dijet mass
18
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Kernel Density Estimation

mt
reco

pdf

19
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Kernel Density Estimation

mt
reco

pdf
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Kernel Density Estimation

mt
reco

pdf
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Kernel Density Estimation

mt
reco

pdf

• No need to assume form of the shape
• Naturally extendible to more than 1 dimensions (correlations 

treated intrinsically)
• No way to interpolate between mass points

1D signal probablity (Mtop= 170GeV/c2)

mt
reco (GeV/c2)

22
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Kernel Density Estimation

mt
reco

pdf

• Expand to 2D
We can correctly account the correlation between 
two observables

2D signal probablity (Mtop= 170GeV/c2)

23
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Signal and background probability
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Likelihood fit and remained issue

• The probability is only defined for 
discrete Mtop and JES points

• We have assumption of parabola 
likelihood and do fit near 
maximum likelihood 

• 2D is a bit complicate

25
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Local polynomial smoothing

Mtop

P

x

KDE gives us estimates Yk at discrete 
points xk

26
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Local polynomial smoothing

Mtop

P

x

Fit a parabola- give decreasing 
weights to the estimates far away 
from x

Keep the value at x

27
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Local polynomial smoothing

Mtop

P

x

28
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Our machinery now

MC
tt

backgrounds
Event reconstruction

2d templates
mt

reco, wjj in 
Lepton+Jets
mt

reco, mT2 in Dilepton
signal pdf's depend 

on Mtop, ΔJES
background pdf's

depend on ΔJES

DATA Event reconstruction
Likelihood

Fit
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Machinery overview and dilepton channel

• Our KDE machinery allow us to use two observable 
without any assumption of PDF shape

• We can account correlation between two observable

• In dilepton channel
We can use two observable even if two observables have slightly 
different information

classical reconstructed top quark mass based on neutrino 
weighting algorithm (mt

NWA)
a kind of transverse mass with two missing particle case (mT2)

– Similarly with W mass measurement
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Dilepton selection

• 1-lepton should be central and isolated but the other can 
be a forward and non-isolated

• We separate sample based on b-tagging
• Slightly lower energy of jet definition and bigger missing 

energy
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mt
NWA

• Leptonical decay of top
t->blv
We measure b and lepton but 
don’t know neutrino

4 unknown
Known parameter

W mass, neutrino mass (2 
unknown)

If we assume the top quark 
mass and neutrino eta direction, 
we can measure neutrino x,y
momentum 
Same thing happen for the 
other leg

• Getting weight using 
measured missing transverse 
energy

t
W

b
l

ν

1 2( , , )i i topw w m ν νη η=

32
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mt
NWA

• Some over neutrino rapidities

• We have maximum weight mt
as reconstructed mass (mt

NWA)

• We scan mt with 3GeV size 
and then decrease the step 
size upto 0.15GeV near the 
peak

• We have gaussian fit in the 
near of peak to get mt
continuously

ji
j i

tt mwηPηPdηdη=mW ,)()()()( ∑∑∫∫ 2121

33
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mT2

• Introduced to measure the mass of 
new physics particle)

Most of new physics predict long-live 
stable particle – dark matter candidate
We expect missing particle at the final 
state 
If we consider pair production of new 
physics particle, it will have two 
missing particle

• Top dilepton channel have exactly 
same final state

mT2 = min[max(mT(1),mT(2))] 

qT+pT=missing pT
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mT2

• Transverse mass of two missing 
particle system

Similar with mT for W mass

• Can be useful to determine the 
mass of new physics particle

One of the most stringent variable

• Top dilepton channel is good 
example of mT2 variable (standard 
candle)

• We can use real data
First application in the real data
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Estimated uncertainty in the dilepton channel

175 GeV/c2 top mass assumed

36

mT2 give the best performance 
between single observables

Unit (GeV/c2)
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Dilepton background
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Signal and background probabilty
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Combining lepton+jet and dilepton channel

Why we measure simultaneously multiple channels
Robust combination
No assumptions about correlations for systematics
Have cross check crossing different channel with one machinery
Dileptons make use of the Lepton+Jets in situ JES calibration

Extended likelihood:
fit for signal and 
background expectation

a-priori background 
constraint
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Mass residual from MC pseudoexperiments
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Pull width
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Systematics
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Result (combined LJ+DIL)

171.7 (stat.) ± 1.1 GeV/c2(syst)
= 171.7 GeV/c2
-1.5

+1.4

-1.9

+1.8
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Result (Lepton Jet)

172.2 (stat.) ± 1.1 GeV/c2(syst)
= 172.2 GeV/c2
-1.6

+1.5

-1.9

+1.9
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Result : Dilepton (two observables)

169.3 ±2.7 (stat.) ± 3.2 GeV/c2(syst.)
= 169.3 ± 4.2 GeV/c2

45
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Result : Dilepton (mT2 only)

168.0 (stat.) ± 2.9 GeV/c2(syst)
= 168.0 GeV/c2
-4.0

+4.8

-5.0

+5.6

46
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Data distribution (lepton jet channel)
1 tag

2tag
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Data distribution (dilepton channel)

48

0 tag

Tagged
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Conclusion

• We measured top mass from dilepton channel using mT2
observable

Measurement in LJ+Dilepton

Measurement in Lepton Jet

Measurement in Dilepton Channels

Measurement in Dilepton Channel with mT2 only

49

168.0 GeV/c2
-5.0

+5.6

169.3 ± 4.2 GeV/c2

171.8 GeV/c2
-1.9

+1.8

172.2 GeV/c2
-1.9

+1.9
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Backup
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Future direction

• We are now trying to expand the dimension of KDE

Our resolution can be improved 

• Possible application
M. Burns, K. Kong, K. T. Matchev, M. Park, Using Subsystem MT2 
for complete mass determination in Decay chains with missing 
energy at Hadron collider - arXiv:0810.5576
They introduce the way to determine the mass of whole particle in 
the decay
We can expand our dimension for the likelihood fit then determine all 
particle mass simultaneously 

• It is generic method. Many other application

2 2( , ; ) ( , , ; ) ( ; )NWA NWA
t T top t T t top topP m m M P m m H M P x M→ →

( ; )P x M

51
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Higgs indirect search
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