
First DNN for COSINE

Seungmok Lee 2020.02.19

DL Study - Status

• We are making results

2020 Deep Learning Study Progress														
Month		Jan			Fe	b.		Mar.						
Week	3	4	5	6	7	8	- 9	10	12					
Orientation														
Survey & Study														
Environment Construction														
DNN for COSINE														
CNN for COSINE														
DNN for GBAR														
CNN for GBAR														
Abstract	TMVA chosen	\ & Ker	as	Uproot started.	, h5py	tested.	DNN optimization. Trial CNN. (plan)							

DNN Cosine - Best Result

- I'm concentrating on Dense layer. (basic DNN)
- For the best result, I got accuracy of 80%!
 - for crystal 3.

Event Selection

- Signal waveform is obtained from calibration run.
 - Run number 1765, 1601.
 - Coincidence (with LS or other crystals) events with basic precut are considered as signal.
- Background waveform is obtained from physics run.
 - Run number 1858.
 - Events without coincidence, with basic pre-cut are considered as background.
 No lpar used.

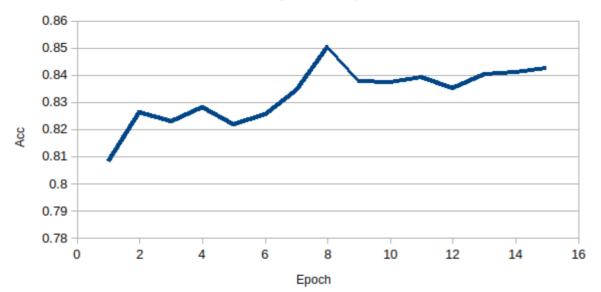
Data Statistics

Run number	1	2	3	4	6	7
1601 (Sig)	1834	3771	5619	2612	7782	7300
1765 (Sig)	1864	3478	5531	2640	7261	8049
1858 (Bkg)	1151944	891598	1219143	1342570	1047218	1184431
Ratio [%] (Sig/Total)	0.320	0.806	0.906	0.390	1.416	1.279

Layer

Layer (type) C	Output Shape	Param #	
			=
reshape_1 (Reshape)	(None, 8160)	0	
dense_1 (Dense)	(None, 768)	6267648	
activation_1 (Activation)	(None, 768)	0	
dropout_1 (Dropout)	(None, 768)	0	
dense_2 (Dense)	(None, 768)	590592	-
activation_2 (Activation)	(None, 768)	0	
dropout_2 (Dropout)	(None, 768)	0	
dense_3 (Dense)	(None, 512)	393728	-
activation_3 (Activation)	(None, 512)	0	
dropout_3 (Dropout)	(None, 512)	0	
dense_4 (Dense)	(None, 512)	262656	-
activation_4 (Activation)	(None, 512)	0	
dropout_4 (Dropout)	(None, 512)	0	
dense_5 (Dense)	(None, 512)	262656	-
activation_5 (Activation)	(None, 512)	0	
dropout_5 (Dropout)	(None, 512)	0	
dense_6 (Dense)	(None, 2)	1026	-
activation_6 (Activation)		0	
Total params: 7,778,306			=

- Fully connected layers
- Dropout 0.25~0.3
- ReLU activation



Training

- Optimizer: Adam
- Epochs: 15
- Batch_size: 2048
- class_weights was set.
 - We have poor statistics of signal events. Setting high weight to signal samples, we can make signal as important as background.

Training Result

Training Accuracy

Test Result

									Sign	al										-	
Energy	0.000	0.050	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500	0.550	0.600	0.650	0.700	0.750	0.800	0.850	0.900	0.950	: Efficiency (%)
0.0	1	0	0	0	0	0	0	0	1	0	3	4	б	1	1	2	3	4	5	2	: eff 93.94
0.5	5	0	0	0	0	0	1	0	8	5	8	б	13	20	19	18	12	13	15	25	: eff 88.69
1.0	3	0	0	0	0	1	0	0	29	9	11	9	14	17	20	14	13	9	13	37	: eff 78.89
1.5	5	0	0	0	0	0	0	1	30	15	10	12	8	12	15	10	11	б	4	36	: eff 70.86
2.0	7	0	0	0	0	1	0	0	27	21	14	12	11	10	б	9	11	8	4	35	: eff 68.18
2.5	1	0	0	0	0	0	0	0	23	14	8	9	5	8	12	9	5	5	5	41	: eff 73.79
3.0	4	0	0	0	0	0	0	0	17	2	5	б	10	9	5	8	3	11	4	53	: eff 83.21
3.5	2	0	0	0	0	0	0	0	12	8	4	1	5	7	2	7	3	4	5	43	: eff 78.64
4.0	2	0	0	0	0	0	0	0	14	1	б	2	1	б	5	2	5	3	б	36	: eff 80.90
4.5	1	0	0	0	0	0	0	0	20	2	5	5	5	1	1	3	0	7	1	35	: eff 73.26
5.0	2	0	0	0	0	0	0	0	9	2	1	3	5	2	3	1	3	4	2	41	: eff 83.33
5.5	0	0	0	0	0	0	0	0	4	3	0	3	1	1	4	3	2	0	3	39	: eff 88.89
6.0	Θ	0	0	0	0	0	0	0	б	1	2	2	4	1	3	3	3	2	5	42	: eff 90.54
6.5	1	0	0	0	0	0	0	0	10	2	4	1	2	1	0	1	0	1	5	29	: eff 77.19
7.0	0	0	0	0	0	0	0	0	5	1	1	1	4	1	3	1	4	1	3	34	: eff 89.83
7.5	0	0	0	0	0	0	0	0	5	0	3	1	0	1	3	1	1	0	2	62	: eff 93.67
8.0	1	0	0	0	0	0	0	0	5	2	3	2	1	3	3	1	0	2	4	48	: eff 89.33
8.5	0	0	0	0	0	0	0	0	2	1	0	1	2	2	1	3	4	0	3	48	: eff 95.52
9.0	0	0	0	0	0	0	0	0	4	2	0	1	1	2	2	1	1	2	5	53	: eff 91.89
9.5	Θ	0	0	0	0	0	0	0	4	0	1	1	2	2	0	0	1	0	0	52	: eff 93.65

Test Result

									-Backgr	ound										-	
Energy	0.000	0.050	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500	0.550	0.600	0.650	0.700	0.750	0.800	0.850	0.900	0.950	: Efficiency (%)
0.0	364	2	0	1	0	2	0	1	23	3	2	3	1	1	0	0	0	0	0	0	: eff 98.26
0.5	541	2	4	1	2	2	1	1	96	12	б	7	5	5	2	1	4	1	0		: eff 95.53
1.0	298	0	0	0	0	1	0	1	71	8	б	5	8	5	4	1	1	1	0		: eff 92.44
1.5	64	0	0	1	0	0	0	0	59	б	1	5	4	2	0	1	3	0	0	1	: eff 88.44
2.0	21	0	0	0	0	0	0	0	34	б	1	3	1	1	0	0	1	0	0		: eff 88.41
2.5	11	0	0	0	0	0	0	0	22	2	7	3	0	5	2	0	0	1	1	1	: eff 63.64
3.0	5	0	0	0	0	0	0	0	27	б	4	3	3	0	1	1	1	1	0		: eff 73.08
3.5	1	0	0	0	0	0	0	0	12	1	3	0	1	3	1	1	0	1	1		: eff 56.00
4.0	4	0	0	0	0	0	0	0	15	1	5	4	1	0	0	0	0	2	0		: eff 58.82
4.5	Θ	0	0	0	0	0	0	0	11	б	2	0	0	0	1	1	0	1	0		: eff 77.27
5.0	Θ	0	0	0	0	0	0	0	9	0	1	3	1	1	0	0	0	1	0		: eff 56.25
5.5	Θ	0	0	0	0	0	0	0	8	1	2	0	0	0	0	0	0	0	0		: eff 75.00
6.0	Θ	0	0	0	0	0	0	0	б	0	0	1	0	1	0	1	1	0	0		: eff 50.00
6.5	Θ	0	0	0	0	0	0	0	4	3	1	1	1	0	1	0	0	0	0		: eff 58.33
7.0	Θ	0	0	0	0	0	0	0	3	2	0	0	0	0	0	2	0	1	0		: eff 55.56
7.5	O	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1		: eff 14.29
8.0	Θ	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0		: eff 60.00
8.5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0		: eff 100.00
9.0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	1		: eff 37.50
9.5	0	0	0	0	0	0	0	0	3	0	0	0	0	0	1	0	0	0	0	3	: eff 42.86

Test Result

									Sign	al											
Energy	0.000	0.050	0.100		0.200				0.400					0.650	0.700	0.750	0.800	0.850	0.900	0.950	: Efficiency (%)
0.0	1	0	0	0	0	0	0	0	1	0	3	4	6	1	1	2	3	4	5		: eff 93.94
0.5	5	0	0	0	0	0	1	0	8	5	8	6	13	20	19	18	12	13	15	25	: eff 88.69
1.0	3	0	0	0	0	1	0	0	29	9	11	9	14	17	20	14	13	9	13	37	: eff 78.89
1.5	5	0	0	0	Ō	0	0	1	30	15	10	12	8	12	15	10	11	6	4	36	: eff 70.86
2.0	7	0	0	0	0	1	0	0	27	21	14	12	11	10	6	9	11	8	4	35	: eff 68.18
2.5	1	0	0	0	Θ	0	0	0	23	14	8	9	5	8	12	9	5	5	5	41	: eff 73.79
3.0	4	0	0	0	Θ	0	0	0	17	2	5	6	10	9	5	8	3	11	4	53	: eff 83.21
3.5	2	0	0	0	0	0	0	0	12	8	4	1	5	7	2	7	3	4	5	43	: eff 78.64
4.0	2	0	0	0	0	0	0	0	14	1	б	2	1	б	5	2	5	3	б	36	: eff 80.90
4.5	1	0	0	0	0	0	0	0	20	2	5	5	5	1	1	3	Θ	7	1	35	: eff 73.26
5.0	2	0	0	0	0	0	0	0	9	2	1	3	5	2	3	1	3	4	2	41	: eff 83.33
5.5	Θ	0	0	0	Θ	0	0	0	4	3	0	3	1	1	4	3	2	0	3	39	: eff 88.89
6.0	0	0	0	0	Θ	0	0	0	6	1	2	2	4	1	3	3	3	2	5	42	: eff 90.54
6.5	1	0	0	0	0	0	0	0	10	2	4	1	2	1	0	1	0	1	5	29	: eff 77.19
7.0	0	0	0	0	0	0	0	0	5	1	1	1	4	1	3	1	4	1	3	34	: eff 89.83
7.5	Θ	0	0	0	Θ	0	0	0	5	0	3	1	0	1	3	1	1	Θ	2	62	: eff 93.67
8.0	1	0	0	0	0	0	0	0	5	2	3	2	1	3	3	1	0	2	4	48	: eff 89.33
8.5	Θ	0	0	0	0	0	0	0	2	1	0	1	2	2	1	3	4	0	3	48	: eff 95.52
9.0	Θ	0	0	0	0	0	0	0	4	2	0	1	1	2	2	1	1	2	5	53	: eff 91.89
9.5	Θ	0	0	0	0	0	0	0	4	0	1	1	2	2	0	0	1	0	0	52	: eff 93.65
									-Backgr												
Energy	0.000	0.050	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500	0.550	0.600	0.650	0.700	0.750	0.800	0.850	0.900		: Efficiency (%)
0.0	364	2	0	1	0	2	0	1	23	3	2	3	1	1	0	0	0	0	0	0	: eff 98.26
0.5	541	2	4	1	2	2	1	1	96	12	б	7	5	5	2	1	4	1	0	0	: eff 95.53
1.0	298	0	0	0	0	1	0	1	71	8	б	5	8	5	4	1	1	1	0	0	: eff 92.44
1.5	64	0	0	1	0	0	0	0	59	6	1	5	4	2	0	1	3	0	0	1	: eff 88.44
2.0	21	0	0	0	0	0	0	0	34	б	1	3	1	1	0	0	1	0	0	1	: eff 88.41
2.5	11	0	0	0	Θ	0	0	0	22	2	7	3	Θ	5	2	0	Θ	1	1	1	: eff 63.64
3.0	5	0	0	0	0	0	0	0	27	б	4	3	3	0	1	1	1	1	0	0	: eff 73.08
3.5	1	0	0	0	0	0	0	0	12	1	3	0	1	3	1	1	0	1	1	0	: eff 56.00
4.0	4	0	0	Θ	Θ	0	0	Θ	15	1	5	4	1	0	0	0	Θ	2	0	2	: eff 58.82
4.5	0	0	0	0	0	0	0	0	11	6	2	0	0	0	1	1	0	1	0	0	: eff 77.27
5.0	0	0	0	0	0	0	0	0	9	0	1	3	1	1	0	0	0	1	0	0	: eff 56.25
5.5	0	0	0	0	0	0	0	0	8	1	2	0	0	0	0	0	0	0	0	1	: eff 75.00
6.0	0	0	0	0	0	0	0	0	6	0	0	1	0	1	0	1	1	0	0	2	: eff 50.00
6.5	0	0	0	0	0	0	0	0	4	3	1	1	1	0	1	0	0	0	0	1	: eff 58.33
7.0	0	0	0	0	0	0	0	0	3	2	0	0	0	0	0	2	0	1	0	1	: eff 55.56
7.5	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1		: eff 14.29
8.0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	2	: eff 60.00
8.5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	: eff 100.00
9.0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	1		: eff 37.50
9.5	0	0	0	0	0	0	0	0	3	0	0	0	0	0	1	0	0	0	0	3	: eff 42.86

Plan

- Try lots of hyper parameters.
 - First, I will focus on Dense layer only.
- Try dropout, batch normalization.
 - Batch normalization: normalize input data. It prohibits overfitting, initialization problem, and accelerates learning speed.
- Observe accuracy distribution in energy.
 - Observe waveform case-by-case, if needed.