Positronium intensity measurement preparation (GBAR)

SNU

Bongho Kim

Simulation check

• Compton BG is stable (Al support frame also move)

- As distance is increased, edge effect is decreased.
- But more time is required for data taking

(Plan to increase Plastic scintillator trigger threshold in Oscilloscope)

Last slide

Task : simulation with detector resolution

- Estimate total charge distribution from ΔE simulation(for 0.5MeV γ)
- Low photoelectron for 0.5MeV gamma : Poisson distribution
- Single photoelectron has been shown from before

Task : simulation with detector resolution

- 1. Fitting single photoelectron by Gaussian PDf and decide mean and sigma of total charge.
- 2. Then \rightarrow gaus₁(q,m,s), gaus₂(q,2m, $\sqrt{2}\sigma$), gaus₃(q,3m, $\sqrt{3}\sigma$)
- 3. Giving weight to each gaussian by poisson distribution (= $a^n e^{-a}/n!$)
- 4. With assumption of linearity, making function for several ΔE (divided bin)
- 5. Fraction of each ΔE is decided by simulation
- 6. Fitting with real data by signal function + bg function.
- 7. Measur efficiency with real signal fraction and Compton BG estimation.

1. Single photoelectron fitting

A RooPlot of "totalQ"

Function : gaus ₁ (m,s) x fr(gaus ₁) + gaus ₂ (2m, $\sqrt{2}\sigma$) x fr(gaus ₂) +poly(0)		
NO. NAME	VALUE ERROR STEP SIZE VALUE	
1 fr(gaus ₁)	7.87453e-01 3.40992e-02 4.28643e-06 6.12489e-01	
2 fr(gaus ₂)	2.10154e-01 3.38594e-02 4.31271e-06 -6.18352e-01	
3 m	1.05161e+00 2.83239e-02 4.88906e-05 -3.03565e-01	
4 s	4.58174e-01 1.78638e-02 5.47739e-05 -7.67796e-01	
ERR DEF= 0.5		
Chisquare/ndf = 1.25		

- Single p.e is selected by signal width (double p.e looks shown)
- Data from Back to back sample

2&3 Gaussian with poisson weight

A RooPlot of "totalQ"

- Poisson PDF = $\frac{a^n e^{-a}}{n!} \leftarrow a$: mean photoelectron number
- Left plot shows example at a = 5.11, from red line, each pdf shows single, double,...,12th photoelectron gaussian
- Weight by poisson PDF is given.

4&5. ΔE correction by simulation

- Back to back(no Compton), 10cm distance measurement(with Compton)
- At right plot (back to back case), each line shows each ΔE bin
- : Red ($0 < \Delta E < 0.1$), pink($0.1 < \Delta E < 0.2$), yellow($0.2 < \Delta E < 0.3$), green($0.3 < \Delta E < 0.4$), violet($0.4 < \Delta E < 0.5$), and black(>0.5(signal))

6. Fitting with real data

7. Compton BG fraction check

• $Eff(10cm) = \frac{(16861 - 1558) \times 0.729}{619925 \times 0.02403 \times 0.967 \times 0.906}$

= $85.47 \pm 0.69\%(stat) \pm 1.6(geometry) \pm 1.6(fitting)$ Need to study more to sure about this result \rightarrow Fitting with 5cm distance, 15cm distance

CEA Saclay & CERN status

CERN

- Possible to use anti-P beam in July (positive)
- \leftarrow But without focusing
- Positron beam will be available from mid of July.
- Some discussion about rail for anti-P trap (for movable option)
- Antion, BG trap moving preparation will be started from July 2017-06-01 Weekly meeting

CEA Saclay

- Buncher + target is installed and test has gone from last week.
- Acceleration by the buncher after BG trap was tested and operation looks Okay. (beam width decreased ~100ns →50ns with ~100kV order→4kV)
 (Need to modify switch circuit because of inductance problem (slow signal))
- BG trap tuning is required.
- Proton beam line need more time for preparation...
- Tomorrow, Antion chamber will be connected with buncher.

To do list

- Fitting back to back data with 1.2MeV PDF.
- Fitting with 5cm, 10cm and 15cm to check.
- Because efficiency calibration is almost done, I will focus on A ntion preparation and simulation.
- ← Help a little proton beam preparation or BG trap also..

BACK UP

