A new possible resonance at Belle

2017. 01.03

Jaeyong Lee

What is it? Lambda or Sigma?

- If ?(1663) is the same particle observed by Crystal Ball experiment. ?(1663) $\rightarrow \eta \wedge$

Assuming it is strong decay, $\left(1, \mathrm{I}_{z}\right)$ of ? (1663) is $(0,0)$ thus $?=\Lambda$ $\left(1, l_{z}\right)$ of η and $\Lambda=(0,0)$

- So the key to identify ?(1663) will be observing it from the $\eta \wedge$ channel.
- Any other possibility? Yes, Pentaquark. This state wasn't predicted by the quark model (excited states of three quark interaction)

TABLE I. Energy eigenvalues (in MeV) of the ground and resonance states with total angular momentum and parity J^{P} from the GBE and OGE RCQMs in comparison to the experimental masses according to the PDG [15]. In each case the number in the parentheses denotes the k th excitation in the respective J^{P} column starting with $k=0$. The resonances denoted by mass values in square brackets represent states not definitely classified by the PDG.

Baryon	J^{P}	Theory		Experiment
		GBE	OGE	
$N(939)$	${ }_{2}^{1+}$	939 (0)	939 (0)	938-940
$N(1440)$	$\frac{1}{2}+$	1459 (1)	1577 (1)	1420-1470
$N(1520)$	$\frac{3}{2}$	1519 (0)	1521 (0)	1515-1525
$N(1535)$	$\frac{1}{2}$	1519 (0)	1521 (0)	1525-1545
$N(1650)$	$\frac{1}{2}$	1647 (1)	1690 (1)	1645-1670
$N(1675)$	$\frac{3}{2}$	1647 (0)	1690 (0)	1670-1680
$N(1700)$	$\frac{1}{2}$	1647 (1)	1690 (1)	1650-1750
$N(1710)$	$\frac{1}{2}+$	1776 (2)	1859 (2)	1680-1740
$\Delta(1232)$	${ }^{\frac{3}{2}}$	1240 (0)	1231 (0)	1231-1233
$\Delta(1600)$	$\frac{3}{2}+$	1718 (1)	1854 (1)	1550-1700
$\Delta(1620)$	$\frac{1}{2}{ }^{-}$	1642 (0)	1621 (0)	1600-1660
$\Delta(1700)$	$\frac{3}{2}$	1642 (0)	1621 (0)	1670-1750
$\Lambda(1116)$	$\frac{1}{2}+$	1136 (0)	1113 (0)	1116
$\Lambda(1405)$	$\frac{1}{2}$	1556 (0)	1628 (0)	1402-1410
$\Lambda(1520)$	$\frac{3}{2}$	1556 (0)	1628 (0)	1519-1521
$\Lambda(1600)$	$\frac{1}{2}+$	1625 (1)	1747 (1)	1560-1700
$\Lambda(1670)$	$\frac{1}{2}$	1682 (1)	1734 (1)	1660-1680
$\Lambda(1690)$	$\frac{3}{2}$	1682 (1)	1734 (1)	1685-1695
$\Lambda(1800)$	$\frac{1}{2}$	1778 (2)	1844 (2)	1720-1850
$\Lambda(1810)$	$\frac{1}{2}+$	1799 (2)	1957 (2)	1750-1850
$\Lambda(1830)$	$\frac{5}{2}$	1778 (0)	1844 (0)	1810-1830
: (1193)	$\frac{1}{2}$	1180 (0)	1213 (0)	1189-1197
$\Sigma(1385)$	$\frac{3}{2+}$	1389 (0)	1373 (0)	1383-1387
Σ [1560]	$\frac{1}{2}$	1677 (0)	1732 (0)	1546-1576
Σ [1620]	$\frac{1}{2}$	1736 (1)	1829 (2)	1594-1643
$\Sigma(1660)$	$\frac{1}{2}+$	1616 (1)	1845 (1)	1630-1690
$\Sigma(1670)$	$\frac{3}{2}$	1677 (0)	1732 (0)	1665-1685
Σ [1690]	${ }^{\frac{3}{2}+}$	1865 (1)	1991 (1)	1670-1727
$\mathbf{\Sigma}$ (1750)	$\frac{1}{2}$	1759 (2)	1784 (1)	1730-1800
$\Sigma(1775)$	$\frac{5}{2}$	1736 (0)	1829 (0)	1770-1780
$\Sigma(1880)$	$\frac{1}{2}+$	1911 (2)	2049 (2)	1806-2025
Σ [1940]	$\frac{3}{2}$	1736 (1)	1829 (2)	1900-1950
玉	$\frac{3}{2}$	1759 (2)	1784 (1)	

Search for hidden-strange pentaquark baryons

PHYSICAL REVIEW D 77, 114002 (2008)

Recent Theories

- 2001: Publication (Kp $\rightarrow \eta \wedge$ channel) from Crystal Ball Experiment. In conclusion, they did not exclude the possibility of a new state other than $\Lambda(1670) 1 / 2^{-}$.
- Liu \& Xie: Interpreted Crystal Ball data with current available \wedge resonances (effective Lagrangian model).
Their results show existence of a new narrow resonance.
- Kamano et al: (Dynamical coupled-channels model) Analyzed all K-p reactions and determined partial-wave amplitudes They could reproduce all four-star resonances in PDG and found several new resonances. And in particular proposed a new narrow $\mathrm{Jp}^{\mathrm{p}}=2 / 3^{+} \Lambda$ resonance that strongly couples to $\eta \wedge$ channel.
- Publications from Theory Groups between 2011-2015

Analysis Progress

Still very beginning - Successfully ran Seongbae's codes

Lambda C from kpip invariant mass from exp 73. Need to optimize cuts

Analysis Steps

1. Reproduce Seonbae's Result (Lambdac, Kp channel)

- Dalitz Plot, Kp invariant mass

2. $\eta \wedge$ invariant mass analysis from Lambdac decays
3. Angular correlation analysis

Backups

Decay Mode A new resonance?

A new resonance from Seongbae's analysis

Peak Position is at around 1663 with width $\sim 10 \mathrm{MeV}$ (narrower)
S(1660): 40-200 MeV S(1670): 40-80 MeV
$M(\eta)+M(\Lambda) \approx 1663.545$
Very close to 1663
Not in PDG!

Related Papers

One experiment: Crystal ball experiment $(K-p \rightarrow \eta \wedge)$ (PRC64.055205)
\rightarrow evidence for a narrow resonance around $p_{k}=734 \mathrm{MeV} / \mathrm{c}(\sqrt{ } \mathrm{s}=1669 \mathrm{MeV})$
Two independent Theory group:
Kamano et al. [PRC90.065204, PRC92.025205]
$\rightarrow \mathrm{J}=3 / 2+(\mathrm{PO3}), \mathrm{M}=1671+2-8 \mathrm{MeV}, \Gamma=10+22-4 \mathrm{MeV}$
Liu \& Xie [PRC85.038201, Eur.Phys.J. A51 (2015) 10, 130]
$\rightarrow \mathrm{Jp}=3 / 2-(\mathrm{DO3}), \mathrm{M}=1668.5 \pm 0.5 \mathrm{MeV}, \Gamma=1.5 \pm 0.5 \mathrm{MeV}$

Differential cross section (Crystal ball)

Total cross section (Crystal ball)

FIG. 2. $K^{-} p \rightarrow \eta \Lambda$ total cross sections compared with the data [1]. Results have been obtained from the best χ^{2} fit. The solid line represents the full results, while the contribution from $\Lambda(1670), t$ channel, and u-channel diagrams are shown by the dotted, dashed, and dot-dot-dashed lines, respectively. The dot-dashed line represents the best results for the total cross sections after including the D_{03} state.

Key measurements

- Peak이 새로운 것을 확인하기 위하여 $\mathrm{J}=3 / 2$ 를 확인 (Angular Distribution 분석을 통해)
- $\mathrm{K}-\mathrm{p} \rightarrow \mathrm{\eta} \wedge$ 실험에서 $\mathrm{J}=3 / 2$ 컴포넌트가 Differential cross section에서 narrow하게 보였으므로 Resonance (1663) $\rightarrow \eta \wedge$ 로 가는 채널도 확인해 보고 이 채 널의 Angular Distribution도 확인

Spin Measurements

- $\Lambda_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J}=1 / 2, \quad \pi \rightarrow \mathrm{~J}=0, \Lambda(1663) \rightarrow \mathrm{J}=(?)$
- $\Lambda_{c}{ }^{+} \rightarrow \Lambda(1663)+\pi^{+}$Decay Mode 에서 $\Lambda_{c}{ }^{+}$의 C.M. frame 에서 $\Lambda(1663)$ 의 모멘텀 방향을 z 축으로 잡으면, $L_{z}=0$ 이 되고 따라서 $\Lambda(1663)$ 의 $\left|J_{z}\right|=1 / 2$ 로 Polarized.
- $\Lambda(1663)$ 의 Polarization을 알면, decay particle의 angular distribution으로 부터 $\Lambda(1663)$ 의 스핀을 결정
- $\Lambda(1663) \rightarrow(\eta \wedge, K p)$ $\eta \wedge, \mathrm{Kp}$ 채널 모두 $\mathrm{J}=(?) \rightarrow \mathrm{J}=0+\mathrm{J}=1 / 2$ 채널

Spin Measurements

1. $\wedge(1663) \mathrm{J}=1 / 2,\left|\mathrm{~J}_{z}\right|=1 / 2$ 일 때, $\mathrm{J}=1 / 2 \rightarrow \mathrm{~J}=0+\mathrm{J}=1 / 2$ $\mathrm{L}=0$ (S-wave) 밖에 안되고 Angular Distribution \rightarrow Flat
2. $\wedge(1663) J=3 / 2,\left|J_{Z}\right|=1 / 2$ 일 때, $J=1 / 3 \rightarrow J=0+J=1 / 2$ $\mathrm{L}=1$ (P-wave)
$\mathrm{J}_{2}=1 / 2 \rightarrow \mathrm{~J}_{2}^{\prime}=1 / 2,-1 / 2: \mathrm{m}=\Delta \mathrm{J}_{2}=0,1$ (weight by $\mathrm{C}-\mathrm{G}$ coefficient) $W(\theta, \varphi) \propto \frac{2}{3}\left|Y_{10}\right|^{2}+\frac{1}{3}\left|Y_{11}\right|^{2} \propto 3 \cos ^{2} \theta+1$
L=2 (D-wave)

$$
\begin{aligned}
J_{2}=1 / 2 \rightarrow J_{2}^{\prime} & = \pm 1 / 2: m=\Delta J_{2}=0,1 \\
W(\theta, \varphi) & \propto \frac{2}{5}\left|Y_{20}\right|^{2}+\frac{3}{5}\left|Y_{21}\right|^{2} \propto 3 \cos ^{2} \theta+1
\end{aligned}
$$

Angular Ditsribution $\rightarrow \mathrm{U}$ shape distribution (though P and D waves can not be distinguished

