A new possible resonance at Belle

2018. 01. 28. Jaeyong Lee

Progress

1. Belle Note
One chapter remaining before distribution
(currently results are with only stat. err.)

2. Systematic errors are being evaluated

Paper 1. Branching ratios

TABLE IX: $\Gamma(\Lambda_c^+ \to \eta \Lambda \pi^+)$ and efficiency corrected yields for both $\Lambda_c^+ \to \eta \Lambda \pi^+$ and $\Lambda_c^+ \to p K^- \pi^+$ channels with statistical error only. For $\Gamma(\eta \to \gamma \gamma)$, $\Gamma(\Lambda \to p \pi^-)$ and $\Gamma(\Lambda_c^+ \to p K^- \pi^+)$, PDG 2018 [4] is referred.

Decay Mode	Yield	Efficiency Corrected Yield	$\frac{\Gamma(\Lambda_c^+ \to \eta \Lambda \pi^+)}{\Gamma(\Lambda_c^+ \to p K^- \pi^+)}$	$\Gamma(\Lambda_c^+ \to \eta \Lambda \pi^+)$
$\begin{array}{c} \Lambda_c^+ \to \eta \Lambda \pi^+ \\ \Lambda_c^+ \to p K^- \pi^+ \end{array}$	$51276 \pm 454 \\ 1544580 \pm 1552$	3182078 ± 21024 8138064 ± 11120	0.294 ± 0.003	$1.83\pm0.02\%$

TABLE X: $\Gamma(\Lambda_c^+ \to \eta \Sigma^0 \pi^+)$ and its efficiency corrected yields with statistical error only. For $\Gamma(\eta \to \gamma \gamma)$, $\Gamma(\Lambda \to p \pi^-)$ and $\Gamma(\Sigma^0 \to \Lambda \gamma)$, PDG 2018 [4] is referred.

Decay Mode	Yield	Efficiency	Efficiency Corrected Yield	$\frac{\Gamma(\Lambda_c^+ \to \eta \Sigma^0 \pi^+)}{\Gamma(\Lambda_c^+ \to pK^- \pi^+)}$	$\Gamma(\Lambda_c^+ \to \eta \Sigma^0 \pi^+)$
$\Lambda_c^+ \to \eta \Sigma^0 \pi^+$	15001 ± 534	0.0577	1033030 ± 36775	0.106 ± 0.004	$0.662 \pm 0.024 \%$

$$\Gamma(\Lambda_c^+ \to \eta \Sigma(1385)^+)$$

can be determined

Σ (1385) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\Lambda\pi$	(87.0 \pm 1.5) %	
Γ_2	$\Sigma\pi$	(11.7 \pm 1.5) %	
Γ_3	$\Lambda\gamma$	$(1.25^{+0.13}_{-0.12})\%$	
Γ_4	$oldsymbol{\Sigma}^+ \gamma$	(7.0 ± 1.7) \times 10	0-3
Γ ₅	$rac{oldsymbol{\Sigma}^{-}\gamma}{oldsymbol{N}\overline{K}}$	< 2.4 × 10	0^{-4} 90%
Γ_6	NK		

However

$$\Gamma(\Lambda_c^+ \to \Lambda^* \pi^+)$$

is difficult to determine (1670) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	20–30 %
Γ_2	$\Sigma \pi$	25–55 %
Γ_3	$\Lambda\eta$	10–25 %
Γ_4	$oldsymbol{\Sigma}(1385)\pi$, $\emph{D} ext{-}$ wave	
Γ_5	$N\overline{K}^*(892)$, $S=1/2$, S-wave	
Γ ₆	$N\overline{K}^*(892)$, $S=3/2$, <i>D</i> -wave	(5±4) %

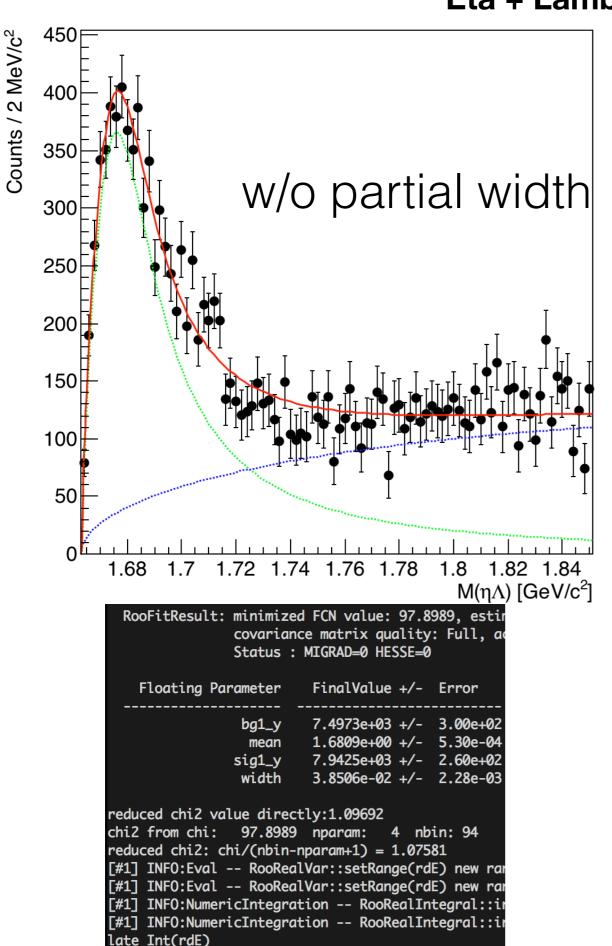
Paper 2. Total Width of Lambda*

1/(1670) WIDTH

VALUE (MeV)

DOCUMENT ID

TECN


COMMENT

25 to 50 (≈ 35) OUR ESTIMATE

1/(1670) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\overline{K}$	20–30 %
Γ_2	$\Sigma \pi$	25-55 %
Γ ₃	$\Lambda\eta$	10–25 %
Γ_4	$\Sigma(1385)\pi$, $ extit{D}$ -wave	
_	$N\overline{K}^*(892)$, $S=1/2$, S -wave	
Γ ₆	$N\overline{K}^*(892)$, $S=3/2$, D -wave	$(5\pm 4) \%$

Eta + Lambda Channel Fitting

yield: 8742.54 error: 285.92

```
450
Counts / 2 MeV/c<sup>2</sup>
                    w/ fixed partial width
    300
                                 of 25 MeV
    250
    200
    150
    100
     50
                                                        1.82 1.84
                                                  1.8
            1.68
                                     1.76
                                                     M(\eta\Lambda) [GeV/c<sup>2</sup>]
                 RooFitResult: minimized FCN value: 97.2338, estimates
```

```
covariance matrix quality: Full, ac
                Status: MIGRAD=0 HESSE=0
    Floating Parameter
                          FinalValue +/- Error
                 bg1_y
                          7.6100e+03 +/- 2.90e+02
                 mean
                          1.6764e+00 +/- 4.47e-04
                sig1_y
                          7.8275e+03 +/- 2.47e+02
                 width
                          1.6569e-02 +/- 7.88e-04
reduced chi2 value directly:1.08218
chi2 from chi: 97.2338 nparam: 4 nbin: 94
reduced chi2: chi/(nbin-nparam+1) = 1.0685
[#1] INFO:Eval -- RooRealVar::setRange(rdE) new rar
[#1] INFO:Eval -- RooRealVar::setRange(rdE) new ran
[#1] INFO:NumericIntegration -- RooRealIntegral::i
[#1] INFO:NumericIntegration -- RooRealIntegral::in
late Int(rdE)
yield: 8763.98 error: 276.939
```