Overview	Codes change		
	Geometry change		
Simulation structure	Geant4 neutron tracking	Digitization	
	Trigger		
	Cosmic ray rejection		
Analvsis	Trilateration		
	Gravity direction		

Simulation structure

Codes change

- Add information about annihilation time after the free fall
- Upward gravity under some temperature
- Temperature change available

Geometry change

- Upper side MMs is added.
- MMs are rotated.

Geant4 neutron tracking problem

• Neutron tracking is stopped after 10us elapsed from a simulation start. (physicslist basic setting)

******	******	******	******	******	******	******	*******	*****	******
* G4Tra	ck Infor	mation:	Particl	e = <u>neutron</u>	, Trac	k ID = 589	91, Paren	t ID = 5880	
******	******	******	******	******	*****	*******	******	********	*********
Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
0	8.62	-0.392	309	4.89	Θ	Θ	Θ	ChamberTop	initStep
1	8.62	-0.392	309	4.89	Θ	Θ	0	ChamberTop	nKiller
******	*******	*******	******	*****	******	*******	******	*****	*****
* G4Tra	ck Infor	mation:	Particl	e = <u>neutron</u>	, Trac	k ID = 589	90, Paren	t ID = 5880	
******	******	*******	******	*****	******	******	*****	*****	*****
Step#	X (mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
Θ	8.62	-0.392	309	8.16	Θ	Θ	Θ	ChamberTop	initStep
1	8.62	-0.392	309	8.16	Θ	Θ	0	ChamberTon	nKiller

WARNING in G4StoppingPhysics::ConstructProcess:	not able to deal with nuc
WARNING in G4StoppingPhysics::ConstructProcess:	not able to deal with nuc
### G4HadronicAbsorptionBertini added for xi-	
WARNING in G4StoppingPhysics::ConstructProcess:	not able to deal with nuc
<pre>### Adding tracking cuts for neutron TimeCut(ns)= 10000</pre>	KinEnergyCut(MeV)= 0
Revised FTFTP_BERT_TRV - new threshold between BERT and	FTFP is over the interval 2 to 4 GeV
quasiElastic was asked to be 0 and it is reset to 0	
### kabarPhysicslistConstructProcess is done	

Geant4 neutron tracking problem

- Our simulation runs for at least 500ms.
- Therefore, make change of neutron tracking time

WARNING in G4StoppingPhysics::ConstructProcess: not able to
G4HadronicAbsorptionBertini added for xiWARNING in G4StoppingPhysics::ConstructProcess: not able to
Adding tracking cuts for neutron TimeCut(ns)= 5.1e+08 KinEnergyCut(MeV)= 0
Revised FTFTP_BERT_TRV - new threshold between BERT and FTFP is over the interv
 -- quasiElastic was asked to be 0 and it is reset to 0
kgbarPhysicsList::ConstructProcess is done
world cuts are set

Trigger • Fake pulses for a bar (directly from hits) are considered.

- Simulate FADC and TCB.
- Same bar hits in a trigger are merged.

3 triggers : Self trigger(each channel), Local trigger(FADC to TCB) and global trigger(TCB to FADC)

- 100k experiments(500ms window) are performed with changed geometry and all generated CRY not only muon.
- Trigger threshold ~ 3 MeV
- Single track trigger (224ns window)
- # of trigger per experiment ~ 300

- To select annihilation induced trigger, 3 variables are considered. For now..
- dt cut, # of hits cut and offline threshold cut
- Algorithm 1 : use # of hits cut, threshold cut, and the dt between the fastest hits in T-B(L-R) bar sets.
- Algorithm 2 : use # of hits cut, threshold cut, and the dt between the all hits in T-B(L-R) bar sets.

- Quantification
- Selection efficiency :

of experiments with only one trigger selected
/# of experiments

• Selection accuracy :

of experiments with the selected trigger is induced by pbar annihilation / # of experiments with only one trigger selected

- **Background rate** : 1 (selection accuracy)
- FOM(figure of merits) : selection efficiency / background rate
- Errors are estimated with binomial distribution.

- Algorithm1 is better at low threshold region.
- But its FOM is smaller than best FOM of algorithm 2.
- # of hits >2 and dt < 3ns cut

• dt cut dependence (# of hits > 2)

Cosmic ray rejection • # of hits cut dependence (dt < 3 ns)

• One best cut which can cover two extremal gravity : dt < 3 ns , # of hits > 2, threshold : 6~8 MeV

Threshold = 6 MeV

Gravity	Efficiency	Background rate	FOM
Upward	0.2643 <u>+</u> 0.0014	0.0311±0.0011	8.5098 <u>+</u> 0.2958
downward	0.2567 <u>+</u> 0.0014	0.0319 <u>+</u> 0.0011	8.0385 <u>+</u> 0.2796

Other rejection scheme

• MVA

- Machine running (NN, BDT, etc.)
- Cut for 3 variables -> Cut for 1 variable
- MVA with predetermined gravity will give bias to machine running.

Trilateration

- Find out the position of annihilation by using hit positions and flight lengths.
- 4 hits are needed to find the annihilation position.
- <4 hits give multiple solutions.
- ->If we give constraint that annihilation occurs at chamber wall, it can be different.
- But the trilateration needs the flight lengths of particles.
- Can we estimate flight lengths only using TOF data?

Trilateration • $(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2 = r_i^2$ where i =1,2,3,4 • $(-2x_i + 2x_{i+1})x + (-2y_i + 2y_{i+1})y + (-2z_i + 2z_{i+1})z$ = $r_i^2 - r_{i+1}^2 - (x_i^2 + y_i^2 + z_i^2) + (x_{i+1}^2 + y_{i+1}^2 + z_{i+1}^2)$ where i = 1,2,3 (x_i, y_i, z_i) (x, y, z)

Trilateration

- T-B included 3< hits
- 3 MeV threshold
- Get (x, y, z) by using the positions of the fastest 4 hits -> (Not only prompted pion but all particles)
- Test 3 cases :
- true flight lengths,
- the same speed,
- mean speed for each particle species

Trilateration : true flight length

Trilateration : the same speed

- Assume $r_i = c(t_{i,hit} t_{ann})$, but we do not have information about t_{ann} in the real experiment.
- The result is also not good.

Trilateration : the mean speed

- Assume $r_i = v_{i,mean}(t_{i,hit} t_{ann})$
- The results highly depend on accuracy of r'_i s

Likelihood ratio for u-d discrimination

- Determine likelihood ratio distribution for 9 temperature
- 3 MeV threshold
- <3ns cut</p>
- Make PDF with dt histograms (50k annihilation->about 15k recorded in the histogram)
- Assume the time for one free fall exp. -> 2 min.
- 100 selected event (about 12 hours data taking)
- -> test statistics

• $Q = \prod_{i=1}^{100} \frac{P(x_i | upward)}{P(x_i | downward)}$

Likelihood ratio

- Up only -> x_i from upward ann.
- Dw only -> x_i from downward ann.

LR for 500uK

LR for 5mK

• Separable? or statistical error?

LR vs temperature

T-B likelihood ratio

LR for 5mK with higher statistics

- Make PDF from 5 million ann.
- And test statistics = 2000 (10 days data taking)

Likelihood ratio distribution for 5mK,