Development of the TOF detector

Ahram Lee Seoul National University

CONTENTS

- 1. TOF detector description
- 2. DAQ system
- 3. Detector performances
 - a. A prototype TOF detector
 - b. Analysis method
 - c. Results

The GBAR experiment

Time-Of-Flight(TOF) detector An array of plastic scintillation bars with four walls – top, bottom, left, right

of bars (10) (10) (12) (12)

consists of 44bars and 88PMTs a bar = 10*5*170 cm³ an array ~ 120*170*1250 cm³

1. Free-fall time

fastest one among 2nd particle signals

2. Annihilation position

dT < 0 for chamber-bottom-annihilation > 0 top T_1 = time to bottom of TOF T_2 = time to top of TOF $dT = T_1 - T_2$

Annihilation vertex reconstruction

to minimize the error (Trilateration)

- 3. Cosmic ray rejection
 - need to be asymmetric along z-axis

3-pi decay events, 4 different height (a) d=425mm (b) 625mm (c) 725mm (d) 825mm

- 3. Cosmic ray rejection
 - need the time resolution smaller than 0.2ns

• System specification

FADC(NOTICE, 500-IBS)

500MHz data sampling 2V/12bit dynamic range 4ch/mod * 2mod

DAQ PC(Intel Core i7-6500U)

2 cores, 8GB ram, 2.50GHz x 4 CentOs Linux7 installed data collecting about 180MB/sec

MTCB – sync board HV supplier(CAEN, SY1527LC)

Event3

From ch2

3

. . .

• DAQ program fdaq – FADC daq program / fdaqg – fdaq with GUI

• DAQ program fdaq – FADC daq program / fdaqg – fdaq with GUI Load setting option(.txt) **#** Common parameters MainWindow . ¤ × Coincidence width Set Runname Set Runnumber default Load Setting Self /pedestal / soft ware trigger View Setting **# Module parameters** Monitoring Recording length (128ns ~ 32us) Manager Status: Device Ready Trigger set Run Name : 2bar Run Number : 24 Output file : 2bar0024.dat Trigger Number: -1 **#** Channel parameters Offset value Refresh Discrimination threshold 0 Auto sec Reset 0 Pulse width(count) threshold Pulse polarity Stop Start Quit . . .

• Data structure

	4i-th Byte	(4i + 1)-th Byte	(4i + 2)-th Byte	(4i + 3)-th Byte	branch	name	
0 - 3	Data Length				0~5	Information about data	
4 - 7	Run Number Trigger Type Trigger Destination				(id, length, type,)		
8 - 11	Trigger Number (from 7th Byte)			Trigger Fine Time	б	Trig_num	Trigger number
12 - 15	Trigger Coarse Time			Module ID	7~8	Trig_time	Fine/coarse time
16 - 19	Channel ID	Channel ID Local Trigger Number (to 20th Byte)			9~12	Local information	
20 - 24		Local Trigger Pattern			13	Waveform	Raw signal volt
25 - 29	Local Starting Fine Time	ocal Starting Local Starting Coarse Time			14	Waveformtime	Raw signal time
32 -	ADC (12 bit * 4 points) / TDC Data (10 bit * 1 point) ······				15~25	Analyzed quantities	

Raw data from FADC (.dat)

Converted data branch information(.root)

a. A prototype TOF detector

Without any source, Cosmic rays go through scintillators and make signals.

Triggers are situated at center(0cm), 20cm, 40cm, 60cm, 77cm from center.

Taking only coincidence data of 6 PMTs, we can measure the time resolutions, find time – position conversion factor and calibrate energy scale.

HV plastic module FADC trigger

a. A prototype TOF detector

b. Analysis method

• Event time(t) : measured by inverse interpolation

Computational Methods in Physics and Engineering, S.M.Wong

b. Analysis method

• Time difference : dtmean & dtfast

$$\begin{array}{ll} dtmean = (tmean_1) - (tmean_2) & dtfast = (tfast_1) - (tfast_2) & ch2 & Bar 2 & ch3 \\ tmean_1 = (t_0+t_1)/2 & tfast_1 = faster time \ btw \ t_0 \sim t_1 & tfast_2 = faster time \ btw \ t_2 \sim t_3 & ch0 & Bar 1 & ch1 \end{array}$$

- c. Results
 - Time and position resolution of scintillation bar

 $\sigma_{time} \sim 0.12 \ ns, \qquad \sigma_{position} \sim 1 \ cm$

 \rightarrow Enough to distinguish top & bottom annihilations and cosmic ray signal

- c. Results
 - Energy calibration (on 1600V)

- c. Results
 - Light efficiency

experimentally ~ 100 photoelectrons / MeV obtained

~10,000photons/MeV * 0.2 * 0.33 \approx 600 photoelectrons/MeV

Typical quantum efficiency of PMT Scintillator area covered by PMT $\frac{photocathod \ area}{scintillator \ area} = \frac{23^2 \pi \ [mm^2]}{50 * 100 [mm^2]} \sim 0.33$