Plans to measure J/ψ photoproduction and TCS on the proton at CLAS12

Pawel Nadel-Turonski

Jefferson Lab

Int. Workshop on using Heavy Flavors to Probe New Hadron Spectroscopies/Dynamics, Busan, Korea, November 18-21, 2012

1

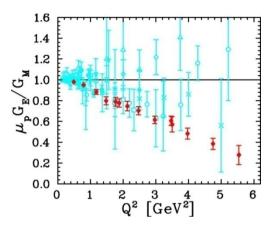
Outline

Introduction

J/w photoproduction near threshold

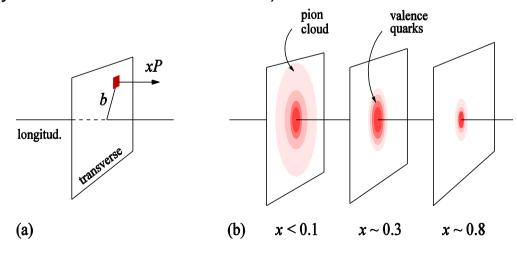
- Gluonic structure of the nucleon at large x
- Behavior of cross section near threshold is unknown
 - CLAS12 will provide the first results
- Future measurements with nuclear targets?

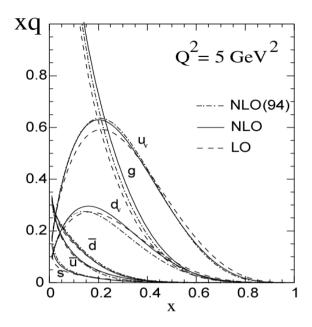
Timelike Compton Scattering (TCS)


- Timelike-spacelike correspondence and universality of GPDs
- Real and imaginary parts of Compton form factors for valence quarks

Approved ep \rightarrow e'pe⁺e- program for CLAS12

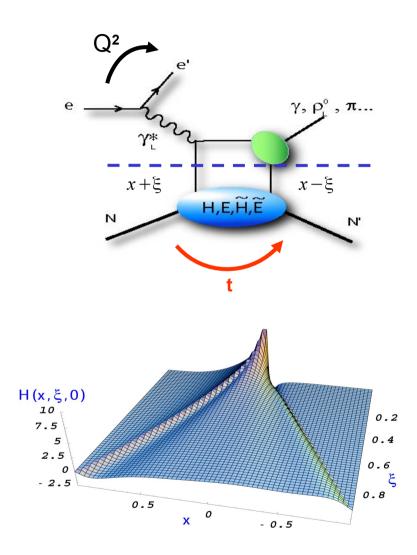
	Proposal	Physics	Contact	Rating	Days	Group	Energy	Target
	E12-06-108	Hard exclusive electro-production of $\pi 0$, η	Stoler	В	80	119 days + 20 days with reversed torus field	11 GeV	Liquid H ₂
	E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	А	60			
	E12-06-119	Deeply Virtual Compton Scattering	Sabatie	А	80			
	E12-09-003	Excitation of nucleon resonances at high Q2	Gothe	B+	40			
	E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119			
\langle	E12-12-001	Timelike Compton Scatt. & J/ ψ production in e+e-) Nadel-Turonski	A-	100 +20			
	E12-12-007	Exclusive $\boldsymbol{\phi}$ meson electroproduction with CLAS12	Stoler, Weiss	B+	60			


- Unpolarized proton target will be first to run
- Experiment E12-12-001 for e+e- physics was approved at the last PAC meeting
- Spectroscopy (119 PAC days) and e+e- (100+20 days) experiments drive the total beam time for proton running (119+20 days), which can be shared by all.
- Approved beam time corresponds to more than a year of actual running


Partons in the nucleon

Elastic form factors

Transverse spatial distributions (Naively Fourier transform of Q² or t)



Parton Distribution Functions Longitudinal momentum distributions

Generalized Parton Distributions

A unified descriptions of partons (quarks and gluons) in momentum and impact parameter space

Generalized Parton Distributions (GPDs)

Experimental Kinematics

- GPDs are measured in exclusive processes
- Q^2 is the momentum transfer *from* the electron
- *t* is the momentum transfer *to* the nucleon
- 2ξ is the difference between initial and final momentum of the struck parton

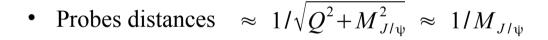
Elastic Form Factors

$$\int_{-1}^{1} dx H(x,\xi,t) = F_{1}(t) \quad \int_{-1}^{1} dx \tilde{H}(x,\xi,t) = g_{A}(t)$$
$$\int_{-1}^{1} dx E(x,\xi,t) = F_{2}(t) \quad \int_{-1}^{1} dx \tilde{E}(x,\xi,t) = h_{A}(t)$$

Parton Distribution Functions (PDFs)

$$H(x, \xi=0, t=0) = q(x)$$

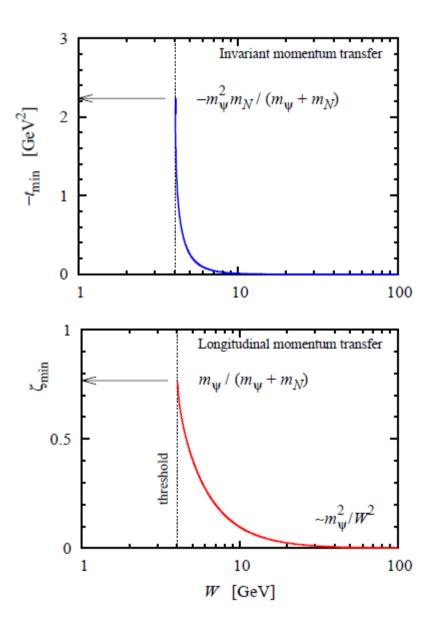
 $\tilde{H}(x, \xi=0, t=0) = \Delta q(x)$


E, \tilde{E} don't appear in DIS (*nucleon helicity flip*)

Charmonium as a probe of nucleon's color field

At high $Q^2 c\bar{c}$ is produced in small-size configurations

- *c.f.* color transparency
- Local probe of color field



- J/ ψ radius much smaller than nucleon: $r_{J/\psi} \sim 0.2 0.3$ fm << 1 fm
- Transverse size in light-cone wave function: $\langle r_T^2 \rangle = 2/3 \langle r^2 \rangle$
- Small-size configurations dominate, but corrections could be important

Exclusive J/ψ kinematics near threshold

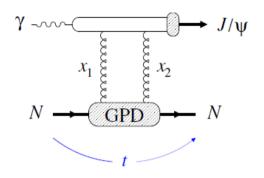
Four-momentum transfer to the nucleon

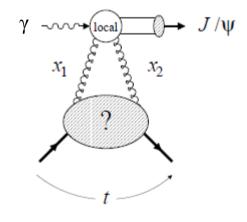
$$t = -(\zeta^2 m_N^2 + \Delta_T^2)/(1-\zeta)$$

- ζ is the "plus" momentum transfer
 light cone variables
- Δ_{T} is the transverse momentum transfer
- t_{min} at threshold is 2.2 GeV

C. Weiss, Non-perturbative forces in QCD, Temple U., 26-28 March 2012

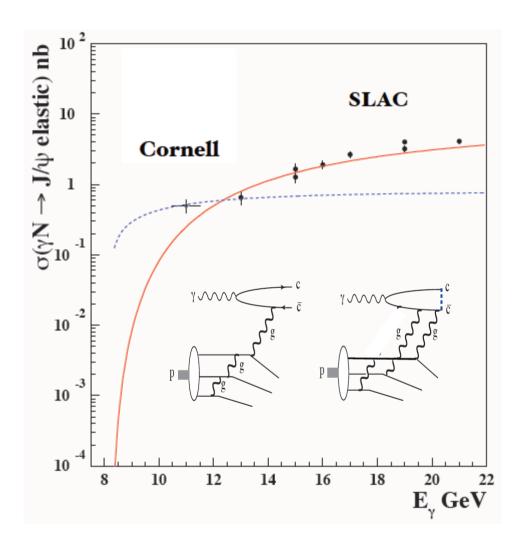
J/ ψ production at high vs. low W (= \sqrt{s})

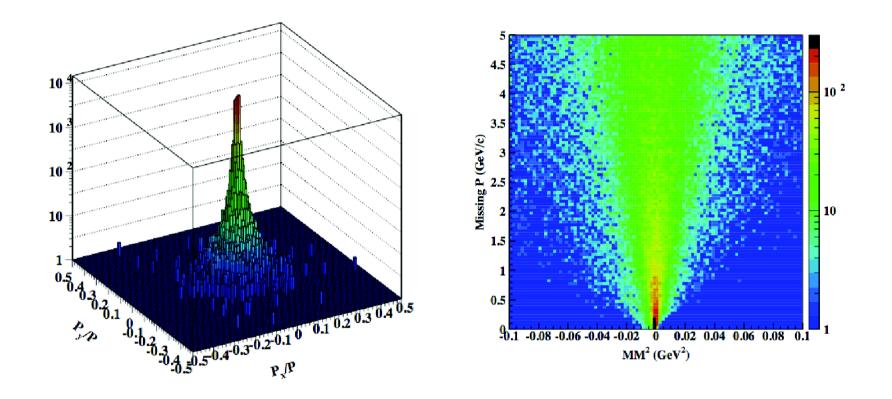

J/ψ production at high W


- Access to nucleon's gluon GPD at small *x*
 - t_{min} and ζ small, well understood diffractive process
 - Measurements at EIC, HERA, COMPASS, FNAL

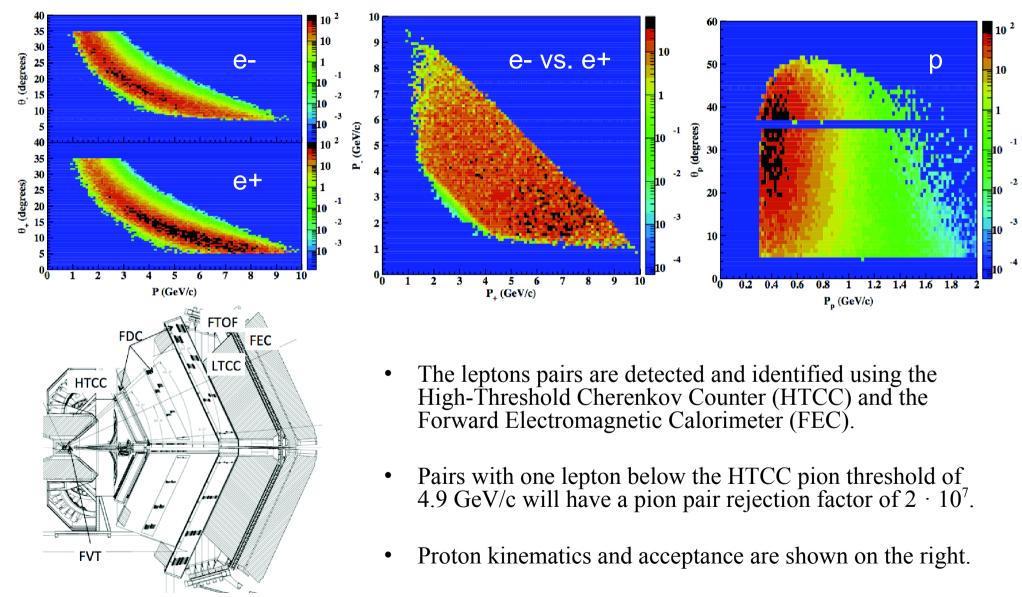
J/w production near threshold

- t_{min} and ζ large, implies large skewness $x_1 x_2$
- Natural interpretation in terms of a gluonic form factor sensitive to non-perturbative gluon field
 - analogous to high-t elastic eN scattering
- Amplitude constant, but cross section near threshold suppressed by large t_{min}

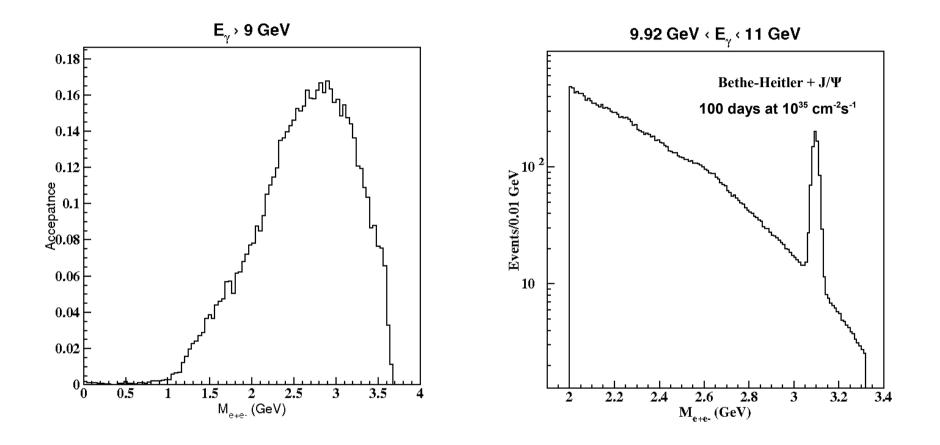



 $A(\gamma + p \rightarrow J/\psi + p) \propto F_{2g}(t)$ gluonic form factor

Enhancement instead of suppression near threshold?

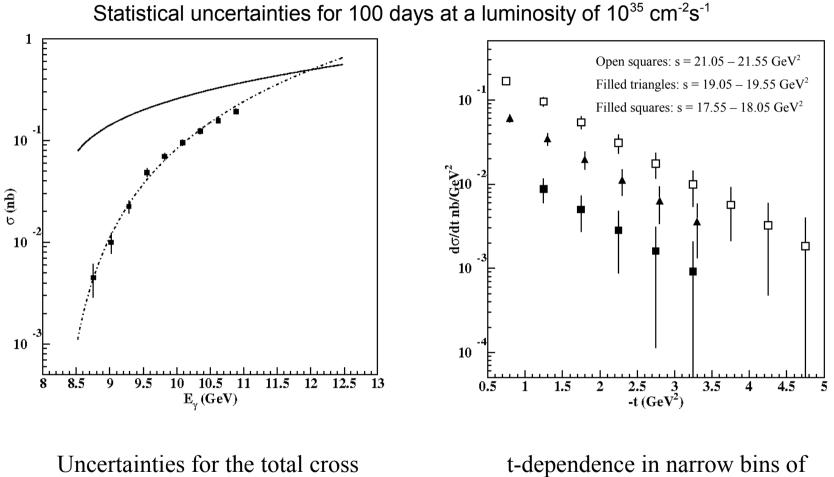

- Based on the Cornell point, Brodsky *et al.* instead suggest a flattening out near threshold
 - diagram on the right?
- CLAS12 can easily answer this question.
- For rate predictions, a conservative estimate more akin to the red curve was used for E12-12-001.

Exclusive quasi-real photoproduction in CLAS12

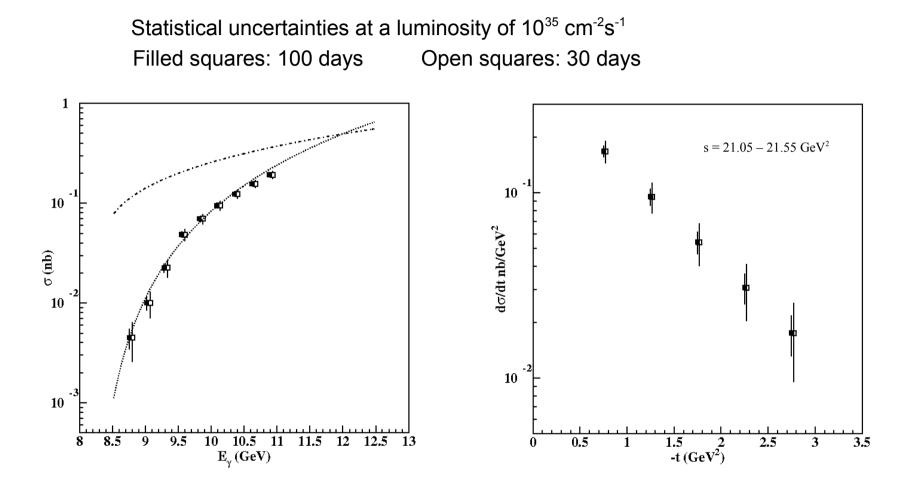


- Low-Q² events are reconstructed by applying cuts on the transverse momentum of the missing beam electron.
- Exclusivity is ensured by detection of all produced final-state particles, and application of a missing mass cut.

Detection of the exclusive final state in CLAS12



Acceptance and yields for J/ψ in CLAS12


• CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range in s and t.

Projected results – exclusive J/ψ production

section assuming the most conservative prediction t-dependence in narrow bins of *s* for a total cross section given by the lower curve on the left

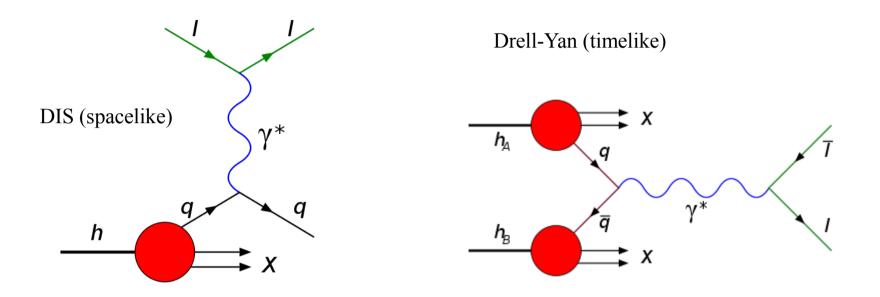
Projected results – "inclusive" J/ ψ production

- Excellent benchmark for studies of detector efficiency
 - Nominal acceptance for $e^+ e^-$ final state identical for both torus polarities

Approved CLAS12 beam time with nuclear targets

Proposal	Physics	Contact	Rating	Days	Group	Energy	Target
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30			
PR12-11-109 (a)	Dihadron DIS production	Avakian	-				
E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56	90	11	liquid D2 target
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA			
E12-11-003	DVCS on neutron target	Niccolai	А	90			
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	А	80			
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	А	120			
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	Avakian	A-	103			
PR12-11-109 (b)	Dihadron studies on long. polarized target	Avakian	-		170	11	NH3 ND3
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	110			
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103			
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60	11	Nuclear
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60	11	Nuclear
E12-10-102	Free Neutron structure at large x	Bueltman	А	40	40	11	Gas D2

Timelike Compton Scattering (TCS)


Timelike-spacelike correspondence and the universality of GPDs

• Of fundamental importance for the GPD program

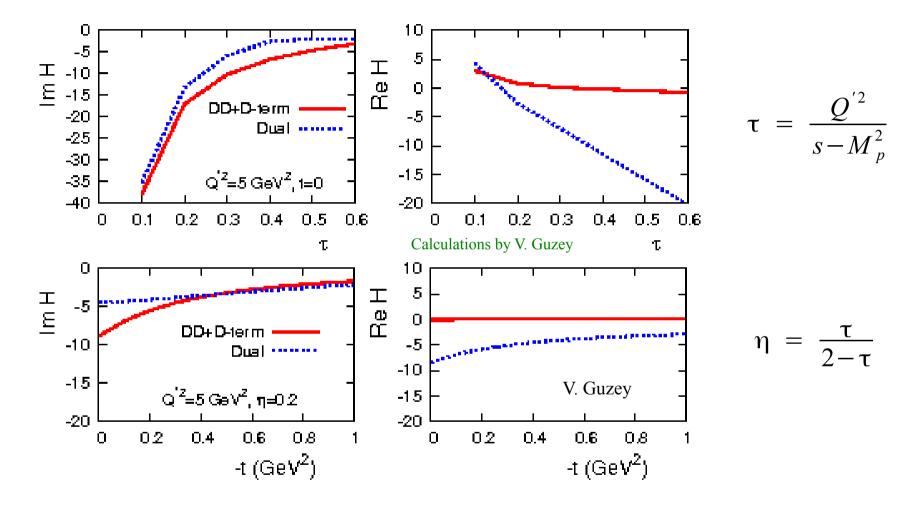
Real (and imaginary) part of Compton amplitude

- Straightforward access through azimuthal asymmetry of lepton pair
- Input for global analysis of Compton Form Factors (and GPDs)

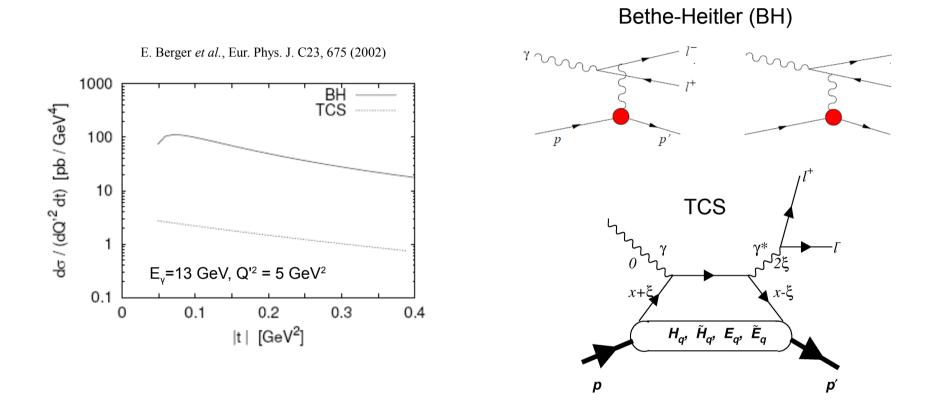
Deep Inelastic Scattering (DIS) and Drell-Yan

- The spacelike DIS and timelike Drell-Yan processes both factorize into a partonic cross section and a Parton Distribution Function (PDF)
 - Measurements of both demonstrated the universality of PDFs

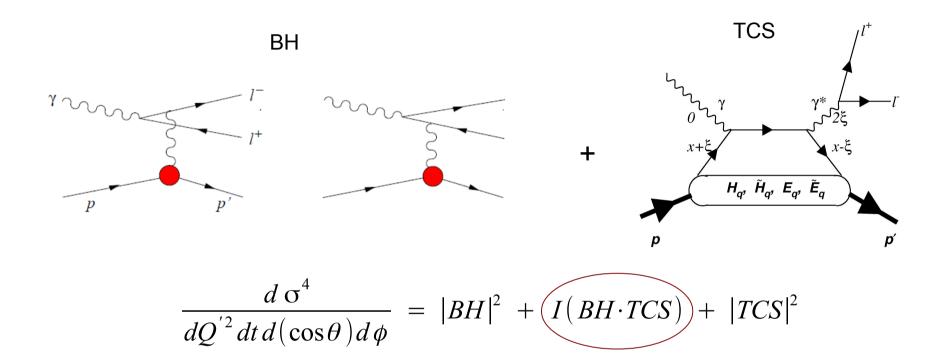
DVCS and TCS


(spacelike) Deeply Virtual Compton Scattering

Timelike Compton Scattering


- In DVCS there is a similar factorization at the amplitude level into a partonic amplitude and a Generalized Parton Distribution (GPD)
 - Measuring both spacelike DVCS and Timelike Compton Scattering (TCS) can test the universality of GPDs

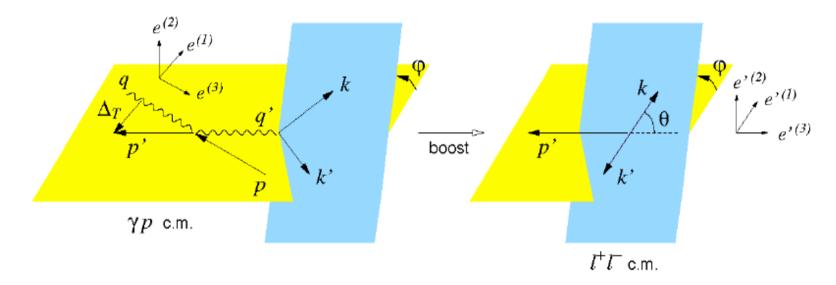
Real part at large x important for GPD models


τ and η are the TCS equivalents of Bjorken *x* and the skewness ξ $Q^2 = M_{e+e}^2$ is the timelike virtuality of the outgoing photon (→ hard scale)

Photoproduction of lepton pairs

- TCS and Bethe-Heitler (BH) processes contribute
- TCS cross section is smaller than BH in JLab 12 GeV kinematics
- The interference term is *enhanced* by the BH and easy to isolate

TCS-BH interference



- Under lepton charge conjugation:
 - Compton and BH amplitudes are even
 - Interference term is *odd*

Easy to project out *only* the interference term

- Direct access to interference term through angular distribution of the lepton pair
 - cosine and sine moments

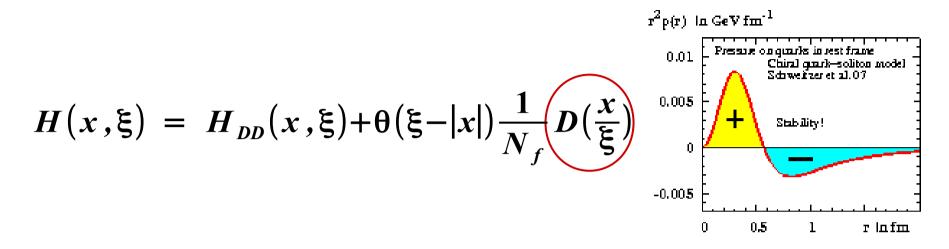
Kinematics

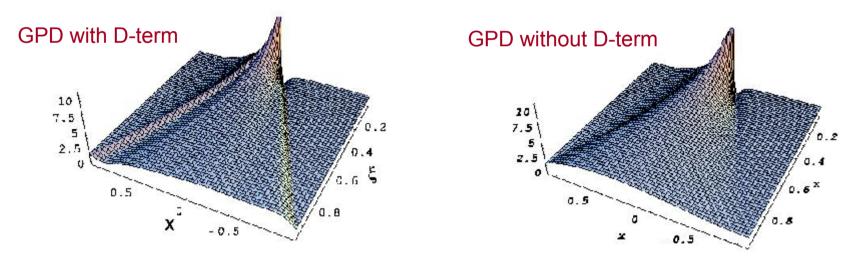
- $k,k' = momentum of e^{-}, e^{+}$
- θ = angle between the scattered proton and the electron
- ϕ = angle between lepton scattering- and reaction planes

$$\frac{d\sigma_{BH}}{dQ'^2 dt d\cos\theta} \approx 2\alpha^3 \frac{1}{-tQ'^4} \frac{1+\cos^2\theta}{1-\cos^2\theta} \left(F_1(t)^2 - \frac{t}{4M_p^2} F_2(t)^2\right)$$

• For θ close to 0 and π , BH becomes large. A cut is usually applied.

TCS cross section and the interference term

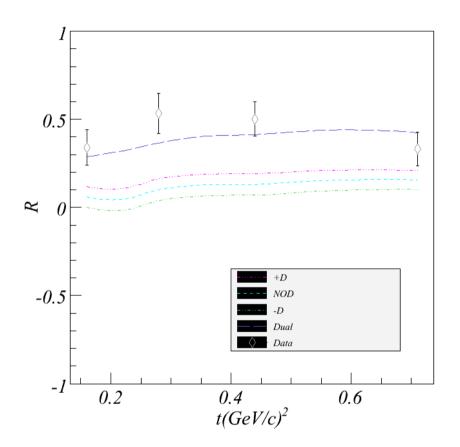

$$\frac{d\sigma_{TCS}}{dQ'^2 d\Omega dt} \approx \frac{\alpha^3}{8\pi} \frac{1}{s^2} \frac{1}{Q'^2} \left(\frac{1+\cos^2\theta}{4}\right) 2(1-\xi^2) \left|\mathcal{H}(\xi,t)\right|^2$$


$$\frac{d\sigma_{INT}}{dQ'^2 dt d\cos\theta d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \underbrace{\cos\varphi}_{\sin\theta}^{1+\cos^2\theta} \underbrace{\operatorname{Re}\tilde{M}^{--}}_{\sin\theta}$$

$$\tilde{M}^{--} \approx \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1(t) \mathcal{H}(\xi, t) \right]$$

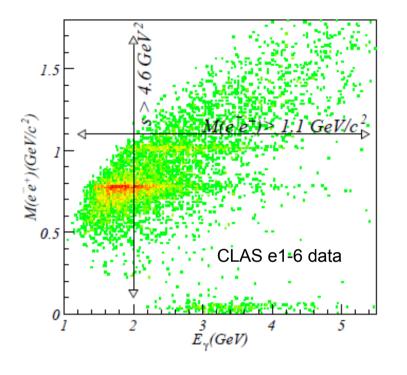
$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^{1} dx \Big(\frac{1}{\xi - x + i\epsilon} - \frac{1}{\xi + x + i\epsilon} \Big) H^q(x,\xi,t)$$

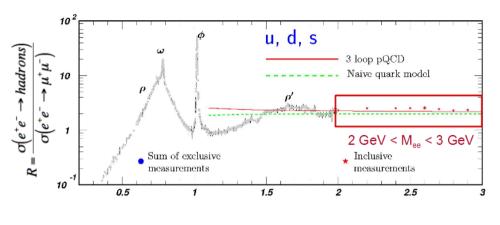
The D-term and the pressure balance in the nucleon


• The D-term contributes only to the real part of the Compton amplitude

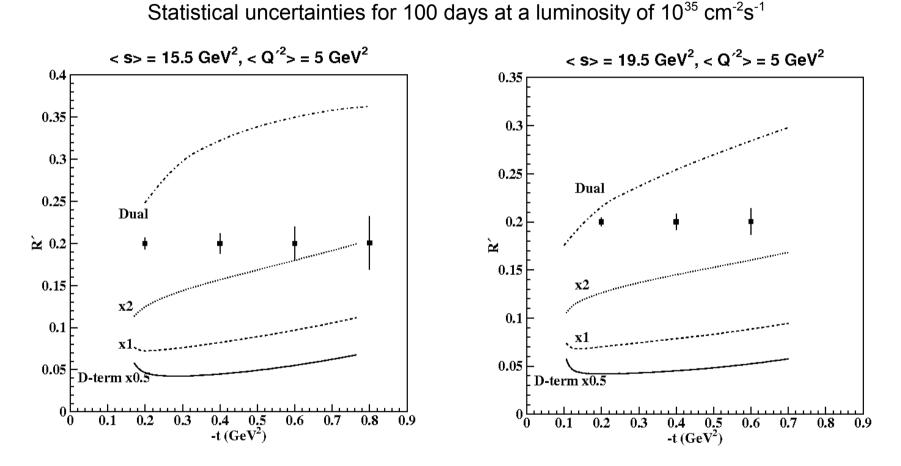
First measurements at 6 GeV

• Cosine moment of weighted cross sections


$$\frac{dS}{dQ^2 dt \, d\, \varphi} = \int \frac{L(\theta, \varphi)}{L_0(\theta)} \frac{d\, \sigma}{dQ^2 dt \, d\, \varphi \, d\, \theta} \, d\, \theta$$
$$R = \frac{2 \int_0^{2\pi} d\, \varphi \cos \varphi \, \frac{dS}{dQ^2 \, dt \, d\, \varphi}}{\int_0^{2\pi} d\, \varphi \, \frac{dS}{dQ^2 \, dt \, d\, \varphi}}$$


- Numerator is proportional to \widetilde{M}^{--}
 - $-\cos \varphi$ part of interference term
- R can be compared directly with GPD models
- Analysis of 6 GeV data with tagged real photons is underway

Comparison of results by R. Paremuzyan *et al* from e1-6/e1f with calculations by V. Guzey.


From 6 to 12 GeV

- 6 GeV kinematics are limited to $M_{e+e} < 2$ GeV.
- 12 GeV extends this mass (Q') range up to 3 GeV
- 6 GeV data were important for developing methods
- 12 GeV will provide
 - A much larger reach in s and Q'^2
 - Higher luminosity and more statistics for multi-dimensional binning
 - A possibility to avoid meson resonances in the e^+e^- final state
 - Data can be taken in the resonance-free region between the ρ' and J/Ψ

Projected results - cosine moment R'

- Uncertainties for R', integrated over the CLAS12 acceptance, for two bins in photon energy, for the lowest Q'^2 bin above the ρ' resonance.
- Different values of the D-term are only shown for the double distribution

Summary

CLAS12 experiment E12-12-001 will measure TCS and J/Ψ

J/Ψ photoproduction near threshold

- Establish reaction mechanism
- Access to gluonic structure of the nucleon at large x

Timelike Compton Scattering (TCS)

- Test universality of GPDs
- Straightforward access to real part of Compton form factors

Backup

Jefferson Lab PAC 39 Proposal

Timelike Compton Scattering and J/ψ photoproduction on the proton in e^+e^- pair production with CLAS12 at 11 GeV

I. Albayrak,¹ V. Burkert,² E. Chudakov,² N. Dashyan,³ C. Desnault,⁴

N. Gevorgyan,³ Y. Ghandilyan,³ B. Guegan,⁴ M. Guidal^{*},⁴ V. Guzey,^{2,5}

K. Hicks,⁶ T. Horn^{*},¹ C. Hyde,⁷ Y. Ilieva,⁸ H.-S. Jo,⁴ P. Khetarpal,⁹ F.J. Klein,¹

V. Kubarovsky,² A. Marti,⁴ C. Munoz Camacho,⁴ P. Nadel-Turonski^{*†},² S. Niccolai,⁴

R. Paremuzyan^{*},^{4,3} B. Pire,¹⁰ F. Sabatié,¹¹ C. Salgado,¹² P. Schweitzer,¹³

A. Simonyan,³ D. Sokhan,⁴ S. Stepanyan^{*},² L. Szymanowski,¹⁴ H. Voskanyan,³

E. Voutier,¹⁵ J. Wagner,¹⁴ C. Weiss,² N. Zachariou,⁸ and the CLAS Collaboration.

¹Catholic University of America, Washington, D.C. 20064

²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ³Yerevan Physics Institute, 375036 Yerevan, Armenia

⁴Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France

⁵Hampton University, Hampton, Virginia 23668 ⁶Ohio University, Athens, Ohio 45701

⁷Old Dominion University, Norfolk, Virginia 23529

⁸University of South Carolina, Columbia, South Carolina 29208

⁹Florida International University, Miami, Florida 33199

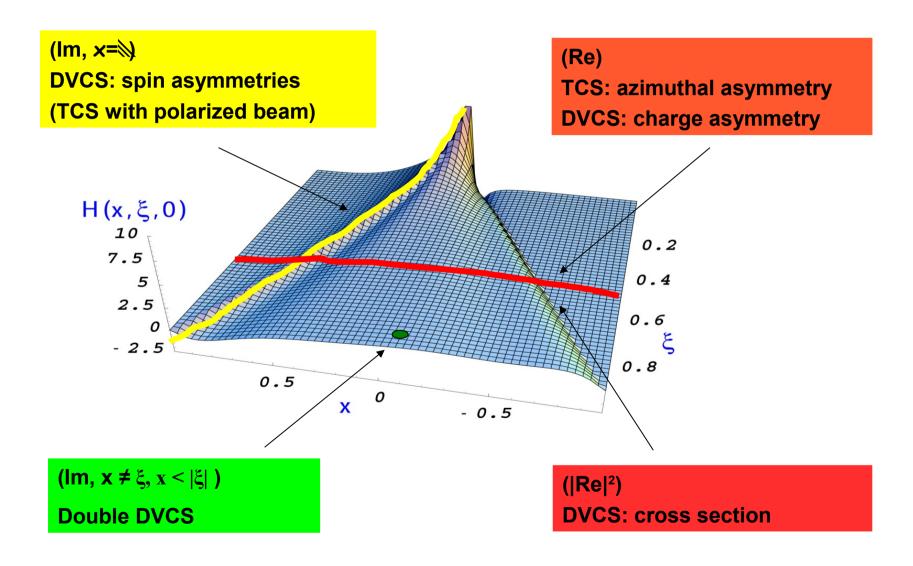
¹⁰CPhT, École Polytechnique, 91128 Palaiseau, France

¹¹CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France

¹²Norfolk State University, Norfolk, Virginia 23504

¹³University of Connecticut, Storrs, Connecticut 06269

¹⁴National Center for Nuclear Research (NCBJ), Warsaw, Poland

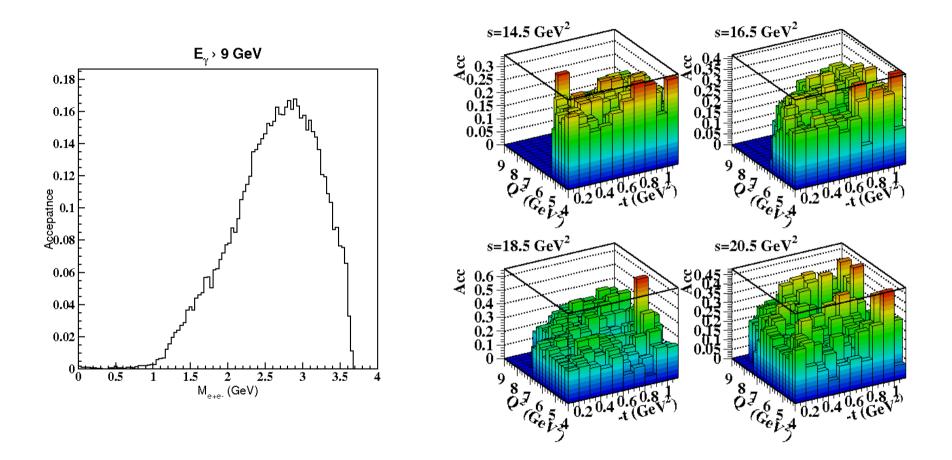

¹⁵LPSC Grenoble, 38000 Grenoble, France

(Dated: May 4, 2012)

^{*}Co-spokesperson

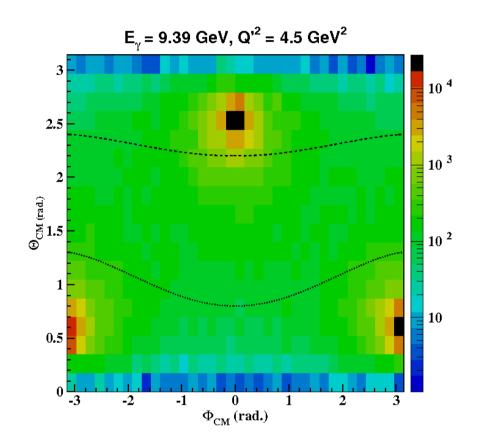
[†]Contact person: turonski@jlab.org

Probing GPDs through Compton scattering

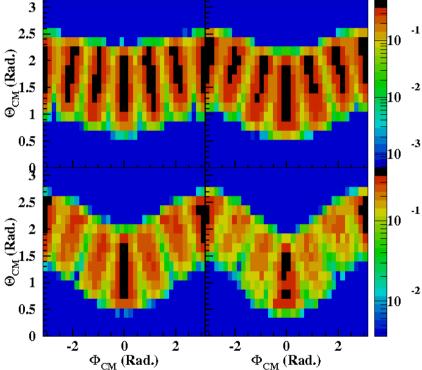


Interference term

To leading order, in terms of helicity amplitudes:

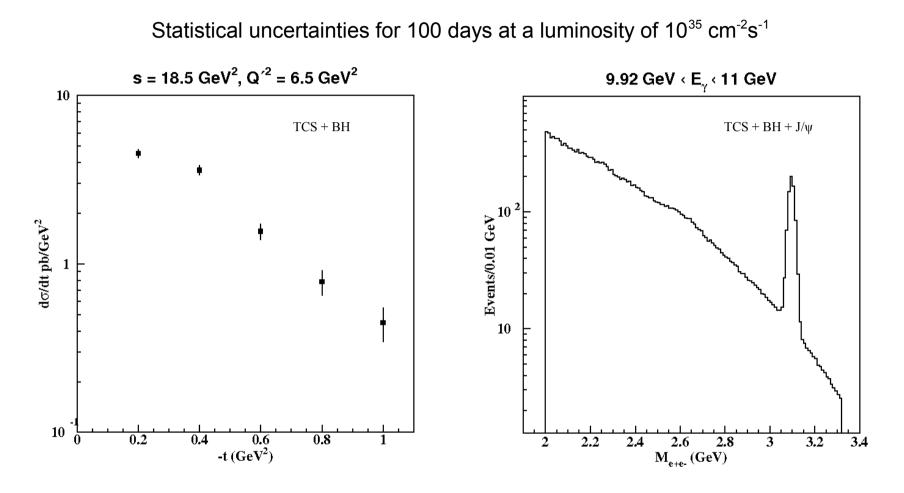

$$\begin{split} \frac{d\sigma_{INT}}{dQ'^2 dt \, d(\cos \theta) \, d\varphi} &= -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\cos \varphi \frac{1+\cos^2 \theta}{\sin \theta} \operatorname{Re} \tilde{M}^{-1} \right] \\ &- \cos 2\varphi \sqrt{2} \cos \theta \operatorname{Re} \tilde{M}^{0-1} + \cos 3\varphi \sin \theta \operatorname{Re} \tilde{M}^{+-1} + O\left(\frac{1}{Q'}\right) \right], \\ &= \frac{\nu \alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\sin \varphi \frac{1+\cos^2 \theta}{\sin \theta} \operatorname{Im} \tilde{M}^{-1} \right] \\ &- \sin 2\varphi \sqrt{2} \cos \theta \operatorname{Im} \tilde{M}^{0-1} + \sin 3\varphi \sin \theta \operatorname{Im} \tilde{M}^{+-1} + O\left(\frac{1}{Q'}\right) \right] \\ &= \frac{1}{2} \sum_{\lambda,\lambda'} |M^{\lambda'-,\lambda-}|^2 = (1-\eta^2) \left(|\mathcal{H}_1|^2 + |\tilde{\mathcal{H}}_1|^2 \right) - 2\eta^2 \operatorname{Re} \left(\mathcal{H}_1^* \mathcal{E}_1 + \tilde{\mathcal{H}}_1^* \tilde{\mathcal{E}}_1 \right) \\ &- \left(\eta^2 + \frac{t}{4M^2} \right) \left(\mathcal{E}_1|^2 - \eta^2 \frac{t}{4M^2} \left(\mathcal{E}_1|^2 \right), \end{split}$$

Acceptance in Q'^2 , s, and t



• CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range in s and t.

Acceptance in the TCS angles θ_{CM} and ϕ_{CM}



s = 17.5 GeV to 19.5 GeV

Generated events. Regions dominated by BH fall outside of the contour indicating the CLAS acceptance. Accepted events for four t-bins. The observable R' is integrated over the CLAS acceptance

Projected results – cross section

- The unpolarized and polarized four-fold differential TCS+BH cross sections will provide input for global analysis of Compton Form Factors.
- The narrow J/ψ peak on the right is very prominent.