Deep Learning in GBAR

Undergraduate Intern Byeongyoon Park

File Conversion

- Slightly modified the code made by Hobin Lee.
- Raw dataset has 100,000 up, down, background signals each, with .root file format.
- Signals are made by Monte Carlo simulation.
- Using 'uproot', we can convert .root file into .hdf5 file in Python environment.
- A single converted signal is 112*88 = 9856 length vector.
- HDF(Hierarchical Data Format) is a file format designed to store and orginize large amounts of data.

SignalMCevrec_bg.root	2020-02-14 오	ROOT 파일
SignalMCevrec_dw.root	2020-02-14 오	ROOT 파일
SignalMCevrec_up.root	2020-02-14 오	ROOT 파일
SignalMCwaveform_flatten.hdf5	2020-02-18 오	HDF5 파일

Almost 12 hours has past to form a single dataset. The capacity of .hdf5 is about 1.5GB.

Deep Learning - FCN

- Just a normal Deep Neural Network with fully connected neurons.
- Used desktop in home to process in GPU.
- General settings, and changed '# of neurons', 'epochs', 'batch size'.
- Sought for optimal settings with maximum accuracy.

```
657s 2ms/step - loss: 0.9258 - acc: 0.5346
                                =======] - 418s 2ms/step - loss: 0.8784 - acc: 0.5643
 70000/270000 [=====
                             =========] - 337s 1ms/step - loss: 0.8659 - acc: 0.5731
 <sup>7</sup>0000/270000 [==
                                  ======] - 332s 1ms/step - loss: 0.8622 - acc: 0.5758
70000/270000 [=:
                            ========= ] - 342s 1ms/step - loss: 0.8581 - acc: 0.5779
=======] - 622s 2ms/step - loss: 0.8570 - acc: 0.5781
                              ========] - 622s 2ms/step - loss: 0.8558 - acc: 0.5802
 70000/270000 [=====
                                        ==] - 583s 2ms/step - loss: 0.8527 - acc: 0.5802
|70000/270000 [==
                             =========] - 525s 2ms/step - loss: 0.8523 - acc: 0.5813
- 1050s 4ms/step - loss: 0.8496 - acc: 0.5826
                              ========] - 55s 2ms/step
test_acc : 0.62543333333333333
(base) C:\Users\User\Google 드라이브\DL\UpDwBg10k>cd "Google 드라이브"\DL\UpDwBg10k
```

[0]

All layers have 512 neurons. epochs = 10, batch size = 128

[1]

First layer has 1024, and the rest have 512 each. epochs = 10, batch size = 2048

[2]

All layers have 1024 neurons. epochs = 7, batch size = 2048

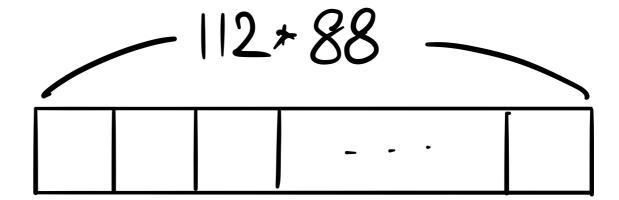
[3]

All layers have 1024 neurons. epochs = 5, batch size = 1024

[4]

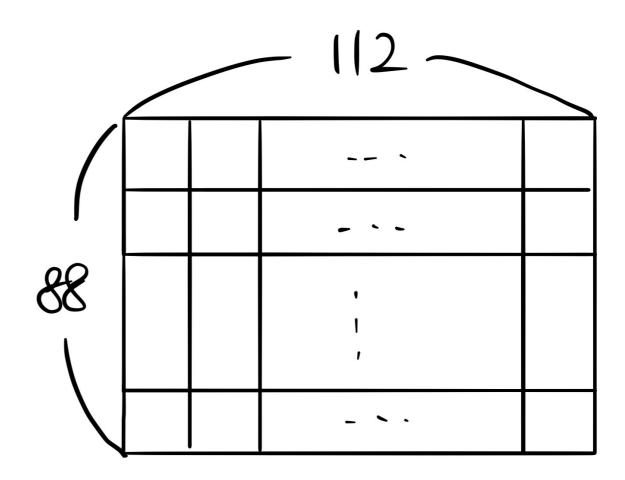
All layers have 2048 neurons. epochs = 5, batch size = 2048

When batch = 4096, the process halted.

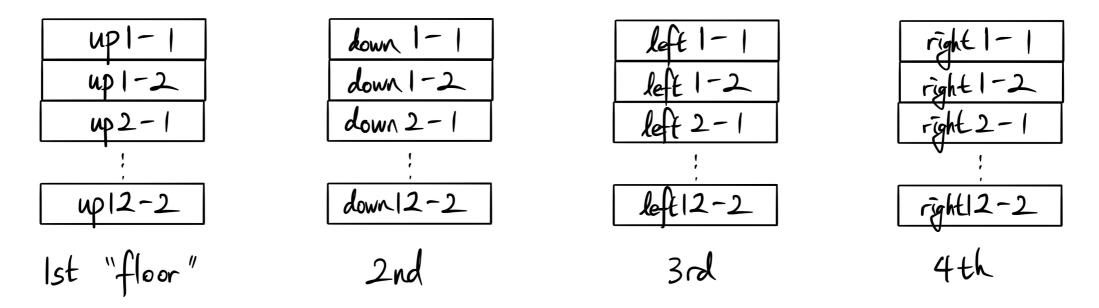

Limit

- No matter how I changed the 'variables', I couldn't enhance the accuracy over 65%.
- Meanwhile, the required rejection rate of cosmic ray (muon) is at least 90%.
- I concluded that the limit of accuracy is unchangeable, at least we use only FCN, which results from the structure of input data and the method of DL.

Convolutional Neural Network

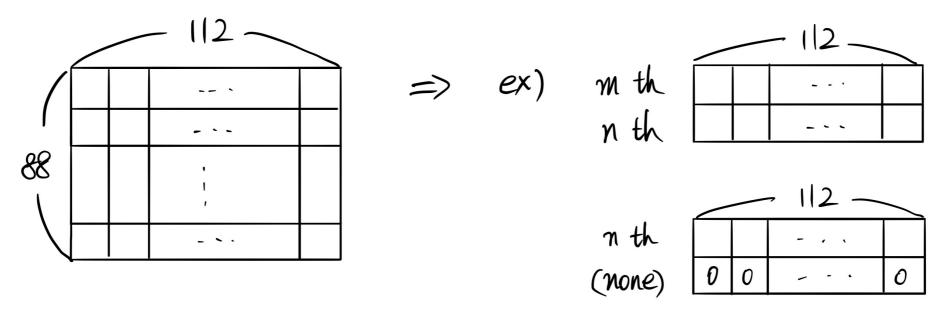

Current Structure

- Single waveform in a PMT has 112 numbers.
- There are 88 PMT signals for single waveform.
- So a waveform is 9856length vector.



CNN #1

 Convert the flattened waveform into 112*88 matrix.


CNN #2

- Convert into 112*24*4 3D tensor.
- Since the number of side PMT is 20, last 4 rows of 3rd, 4th 'floor' are all zeros.

"Give the geometry of TOF to the dataset!"

Other Method?

- Assumption
 - : Maybe only 1 or 2 signals would be caught in a single trigger.
- →Delete the unnecessary zero vectors to make the data structure simple.
- Reject the case of 'more than' 2 signals in a single trigger.