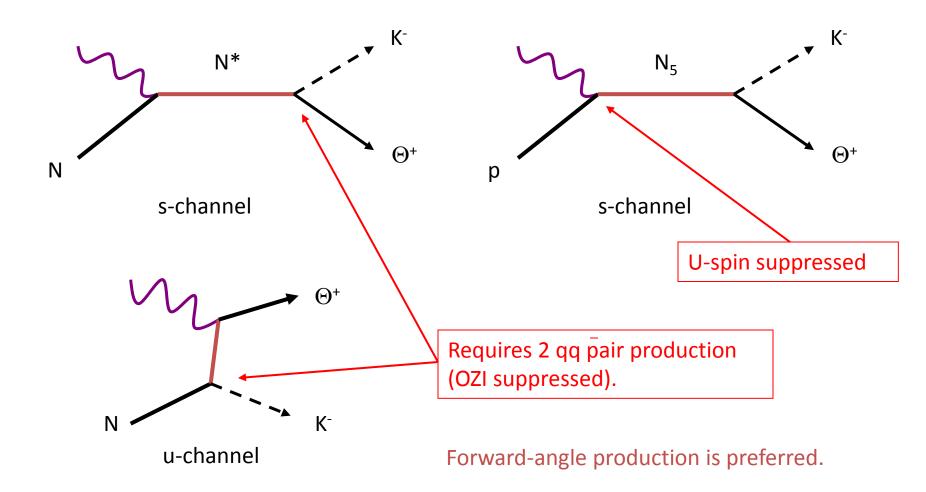
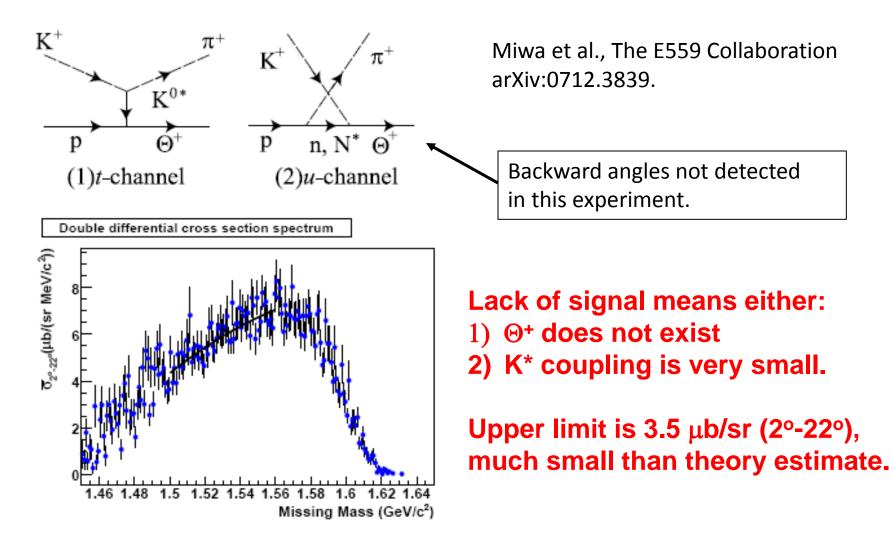
Comment on the Narrow Structure claimed by Amaryan et al.

Ken Hicks Workshop on Hadron Dynamics Pusan, Korea, 20-Nov-2012

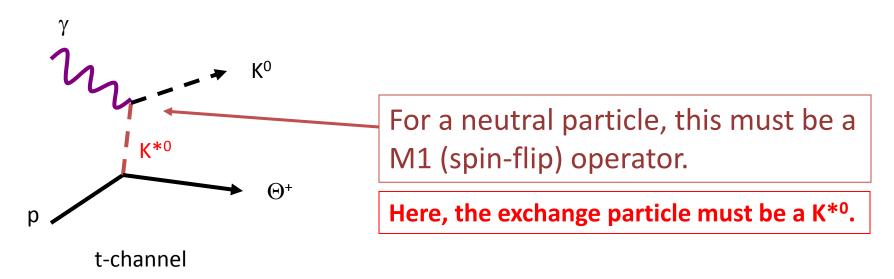

Outline

- Brief review of Θ^+ results.
- Brief review of paper by Amaryan et al.
- CLAS Collaboration view of this paper
- Discussion: possible explanation
- Summary

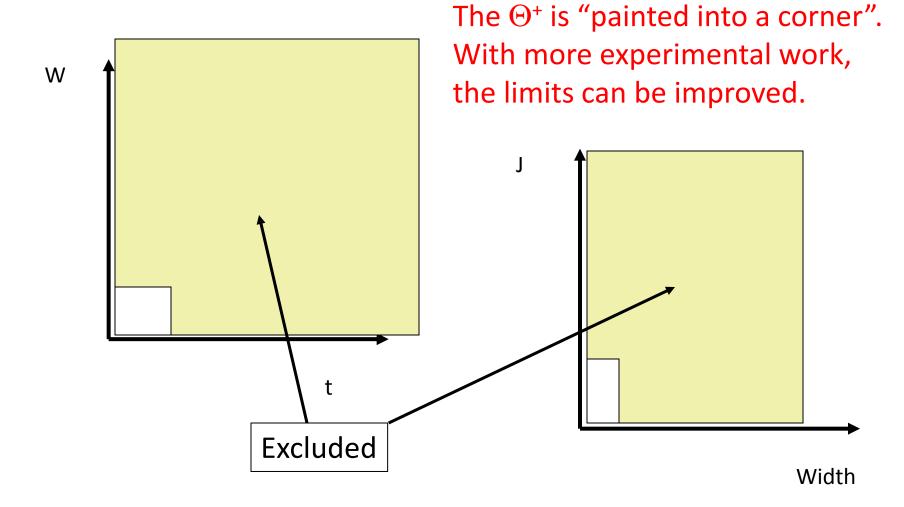

Experimental Situation for $\Theta^{\scriptscriptstyle +}$

- There are many null results.
 - No Θ^+ from e⁺e⁻ or high energy collisions.
 - 4-5 positive experiments repeated, all null.
- Only 2 results still appear viable:
 - LEPS $\gamma d \rightarrow K^+ K^- X$ (forward angle).
 - DIANA bubble chamber data (nucleus)

Suppressed Kinematics


KEK experiment

11/20/2012


Photoproduction Experiments

The s- and u-channel diagrams are suppressed, and no contact diagram.

If the coupling vertex N Θ^+ K* is small, then this could explain why the CLAS proton experiments give a null result.

Exclusion Regions for Θ^+

Paper by Amaryan et al.

PHYSICAL REVIEW C 85, 035209 (2012)

Observation of a narrow structure in ${}^{1}H(\gamma, K_{s}^{0})X$ via interference with ϕ -meson production

M. J. Amaryan,^{1,*} G. Gavalian,¹ C. Nepali,¹ M. V. Polyakov,^{2,3} Ya. Azimov,³ W. J. Briscoe,⁴ G. E. Dodge,¹ C. E. Hyde,¹ F. Klein,⁵ V. Kuznetsov,^{6,7} I. Strakovsky,⁴ and J. Zhang⁸

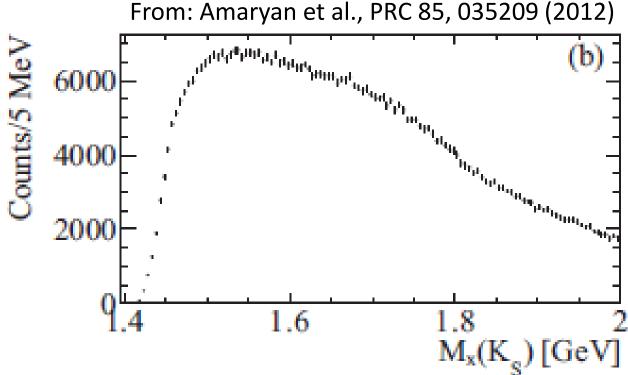
¹Old Dominion University, Norfolk, Virginia 23529, USA

²Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Collaboration

Subset of CLAS³Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia ⁵Catholic University of America, Washington, DC 20064, USA

⁶Kyungpook National University, 702-701, Daegu, Republic of Korea ⁷Institute for Nuclear Research, 117312, Moscow, Russia ⁸Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA (Received 20 October 2011; revised manuscript received 29 February 2012; published 26 March 2012; publisher error corrected 29 March 2012)

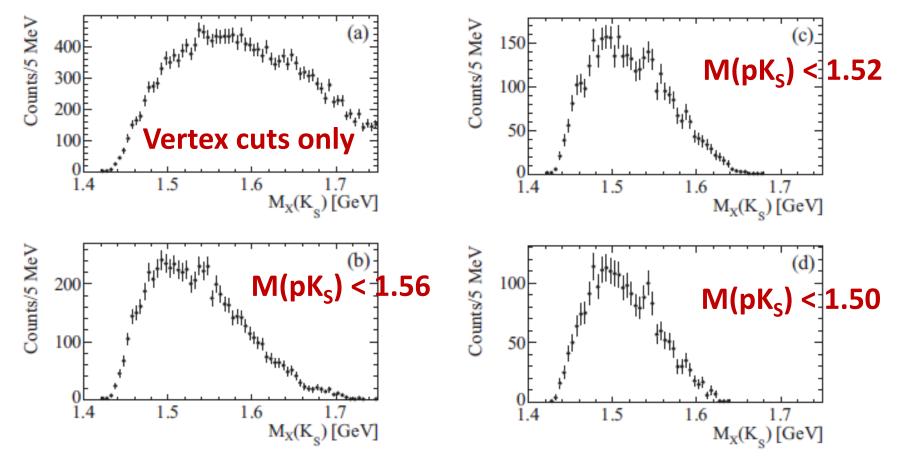

We report observation of a narrow peak structure at ~1.54 GeV with a Gaussian width $\sigma = 6$ MeV in the missing mass of K_S in the reaction $\gamma + p \rightarrow pK_SK_L$. The observed structure may be due to the interference between a strange (or antistrange) baryon resonance in the pK_L system and the $\phi(K_SK_L)$ photoproduction leading to the same final state. The statistical significance of the observed excess of events estimated as the log-likelihood ratio of the resonant signal + background hypothesis and the ϕ -production-based background-only hypothesis corresponds to 5.3σ .

What they claim to see

We report observation of a narrow peak structure at ~1.54 GeV with a Gaussian width $\sigma = 6$ MeV in the missing mass of K_S in the reaction $\gamma + p \rightarrow pK_SK_L$. The observed structure may be due to the interference between a strange (or antistrange) baryon resonance in the pK_L system and the $\phi(K_SK_L)$ photoproduction leading to the same final state. The statistical significance of the observed excess of events estimated as the log-likelihood ratio of the resonant signal + background hypothesis and the ϕ -production-based background-only hypothesis corresponds to 5.3 σ .

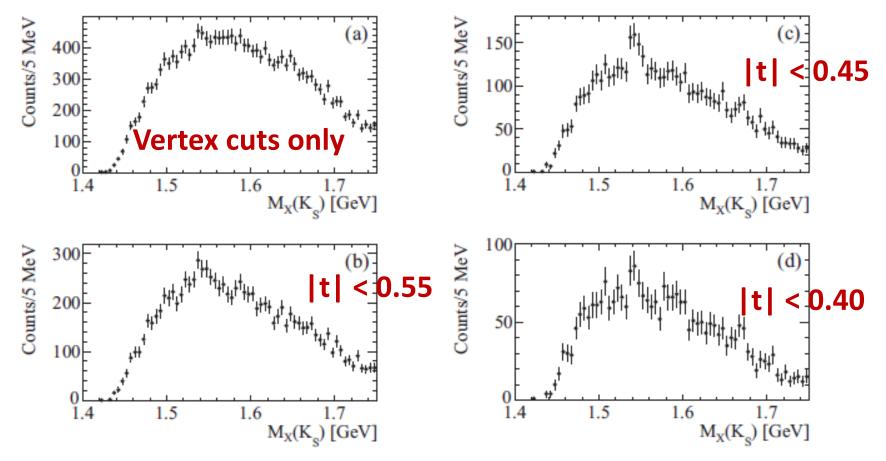
- 1) Photoproduction on the proton, K_s^0 detected.
- 2) Possible interference with ϕ -meson could enhance signal.
- 3) Requires OVERLAP with ϕ kinematics.
- 4) Narrow peak in mass of pK_s at 1.54 GeV, narrow width.
- 5) Log-likelihood statistical analysis: 5.3 σ (after t-cut)

Missing Mass: cut ABOVE ϕ -mass


Notes:

1) Standard particle identification: exclusive pK_SK_L final state

2) Cut on M(K_SK_L) > 1.04 GeV: **reproduces published CLAS data**


Missing mass: cut ON ϕ -mass

To reduce background from Y* states, cut on invariant mass M(pK_S). From: Amaryan et al., PRC 85, 035209 (2012)

Missing mass: cut ON ϕ -mass

To enhance interference with φ-production, cut on |t|. From: Amaryan et al., PRC 85, 035209 (2012)

Fit to peak with MC background

Choose cut on $|t| < 0.45 \text{ GeV}^2$ (with cut on ϕ -mass and K_s vertex)

From: Amaryan et al., PRC 85, 035209 (2012)

- 1) MC is from pure ϕ -production models (dashed, dot-dash)
- 2) Log-likelihood compares solid and dot-dash: 5.3σ .

For comparison: both cuts

Choose cuts on $|t| < 0.45 \text{ GeV}^2$ and $M(PK_S) < 1.56 \text{ GeV}$ (plus ϕ).

From: Amaryan et al., PRC 85, 035209 (2012)

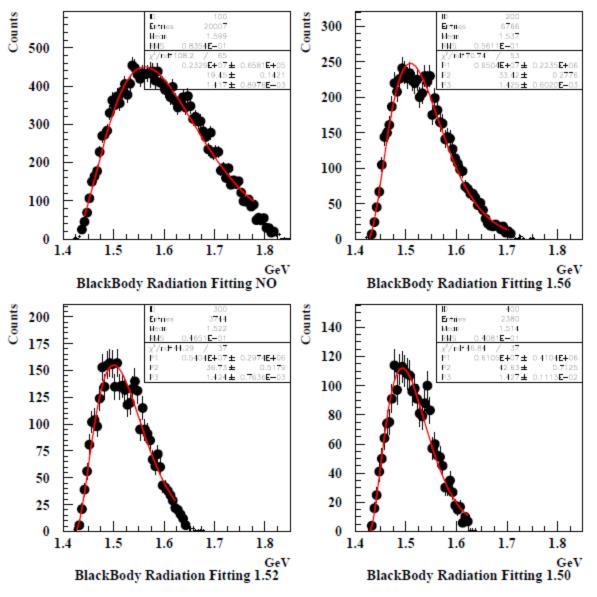
Korean workshop

CLAS Collaboration Response

- An analysis review was carried out by a committee of 5 CLAS members.
 - They recommended that this analysis not go forward as a CLAS paper.
 - Reason: results are too dependent on the t-cut
- A collaboration-wide vote to proceed with this analysis as a CLAS publication did not pass.

CLAS Coordinating Committee

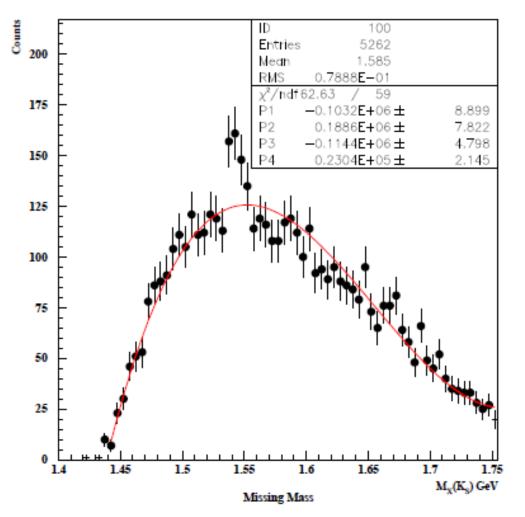
• Requested the following text be added to the paper by Amaryan et al.:


The interpretation of experimental results obtained in this analysis reflects the opinion of the authors and not that of the CLAS Collaboration as a whole.

No-peak fits Here are the same mass-cut figures, but now plotted with a new background shape, and no peak.

The reduced χ^2 is about 1.5 (all cases) so these fits are OK.

(Fits by W. Tang)



After t-cut: how many counts?

Here is the "best" t-cut spectrum, used for final results by Amaryan et al.

In 3-bins at M_x=1.54 GeV above the background shown, the number of counts in the "peak" is ~90 counts. Data points only are from Amaryan et al, PRC 2012.

Before t-cut: how many counts?

Here, we look at the data before any t-cut. The number of counts above background at M_x =1.54 GeV is about 60 counts. Under the peak, the background has 1260 counts. (We use the same 3 bins.) The "peak" significance is estimated at $< 2\sigma$.

Data points only are from Amaryan et al, PRC 2012. Counts ID. 100 Entries 20007 Mean 1.599RMS 0.8354E-01 600 √²/ndf44 36 29.90 24.68 $002E+06\pm$ $-0.1064E+06 \pm$ 16.02 500 0.1812E+05± 8.162400 300 200 100 14 1.451.5 1.5516 1.6517 1.75M_v(K_c) GeV

Counts: a quick summary

- Amaryan et al. claim after the "best" t-cut: – 142 +/- 46 counts, significance ~5σ.
- CLAS Collaboration estimate after same t-cut: - 90 +/- 25 counts, significance ~3.5σ.
- CLAS Collab. Estimate before any t-cut: - 60 +/- 35 counts, significance ~2σ.
- Question: how can the counts in the peak increase after applying a t-cut?
 - Could this be a statistical fluctuation??

Discussion: qualifying remarks

- First, Amaryan et al. are not here to defend their position. They should have that chance.
- Second, there is a possible t-cut behavior:
 - This may be an interference with a p-wave resonance, so angular interference effects are possible: it could increase counts after a cut.
- Bottom line: evidence for a new resonance requires should be more convincing.

The CLAS Collaboration was not convinced.

Summary

- There was no fault found in the <u>data analysis</u> of the paper by Amaryan et al.
 - However, there was disagreement between the CLAS Collaboration and the authors about the interpretation of the results after a t-cut.
- If there is a narrow structure at M_x =1.54 GeV in this reaction at the significance claimed by Amaryan et al., then it has strange behavior.
 - The counts in the peak after the t-cut seems to be more than the counts before any t-cut.