Limit on H-dibaryon production in the Y(1,2S) decay

BongHo Kim(SNU) For the Belle collaboration

Motivation

Our expectation for Y(ns)decay

 clean signature for Belle : We have enough data for Y(1,2S)=(102+158)*10⁶#

 Υ (1S) \rightarrow anti-deuteron + anything

u,d,s-quarks in equal numbers u,d,s-quarks in equal numbers $\uparrow, \Sigma, N, ... , \pi, K, ... ,$

CLEO: Bf[$\Upsilon(1S) \rightarrow$ anti-deuter on + X]=3 x 10⁻⁵ Large!! If H-dibaryon exists, one can naively expect a Bf of order ~ 3x10⁻⁵

$\Lambda\Lambda$ cut value

Particle	Quantity Requirement		
Λ_1			
	$PID(P_1 \pi \text{ or } K)$	>0.1	
	Goodvee	1 or 2	
	ΔΜ(πρ)	<±2Г	
Λ_2			
	$PID(P_2 \pi \text{ or } K)$	>0.1	
	ΔΜ(πρ)	<±2Г	
	$ct_{\Lambda 2}$	>-0.5	
$\Lambda_1 \Lambda_2$	χ ²	<200	
$\Lambda_1 \Lambda_2$ (multiple entry)	χ ² smallest		
$\pi_1\pi_2$	$M(\pi_1\pi_2)$	>0.288	
p_1p_2			
	$M(p_1p_2)$	>1.878	
	Nhit(p ₁ +p ₂)	>60	

$M(\overline{\Lambda\Lambda})$ Distribution problem

 $\mathsf{M}(\Lambda\Lambda)\mathsf{-}\mathsf{M}(\Lambda_1)\mathsf{-}\mathsf{M}(\Lambda_2)$

 $\mathsf{M}(\overline{\Lambda\Lambda}) - \mathsf{M}(\overline{\Lambda_1}) - \mathsf{M}(\overline{\Lambda_2})$

→ low momentum \overline{N} annihilation. cross sections large & poorly measured, → Discrepancy likely due to underestimates of these effects in the MC. → we correct efficiency using data to make $\Lambda\Lambda$ & $\overline{\Lambda\Lambda}$ yields equal. → Correction factor: R = 0.768±0.061 (0.061 = systematic error)

Open $\Lambda/\overline{\Lambda}$ Box

M($\Lambda\Lambda$ or $\overline{\Lambda\Lambda}$) Distribution using Y(1S)

Red : MC(with signal at BF[Y(1S)→HX] = 4*10⁻⁵level) Blue : Real Y(1S) data

$\Lambda p\pi$ cut value

Particle	Quantity Requirement		
Λ			
	$PID(P_1 \pi \text{ or } K)$	>0.1	
	Goodvee	1 or 2	
	ΔΜ(πp)	<±2Г	
p ₂	$PID(P_2 \pi \text{ or } K)$	>0.9	
π_2	$PID(\pi_2 k)$	>0.6	
	$PID(e \pi_2)$	<0.1	
$\Lambda p_2 \pi_2$			
	χ ²	< 50	
	cτ _H	>0	
$\Pi_1 \pi_2$	$M(\pi_1\pi_2)$	>0.28	
p ₁ p ₂			
	$M(p_1p_2)$	>1.878	
	Nhit(p ₁ +p ₂)	> 50	
$\Lambda p_2 \pi_2$	χ ² Smallest one		
Λ(not anti)	momentum	0.5	
p ₂ (not anti)	MornewHadron_busan	0.5	

2012-11-19

$M(\Lambda p\pi)$ Distribution problem

$M(\Lambda p\pi)$ Distribution problem

- difference between MC& data due to p's & Λ's produced in detector by low energy K's
- Not an issue for \vec{p} 's & $\vec{\Lambda}$'s

• Reject p's and Λ 's with p<0.5GeV/c (not applied $\overline{p} \& \overline{\Lambda}$)

Open $\Lambda p\pi / \Lambda p\pi$ Box

$M(\Lambda p\pi)$ distribution using Y(1S)

$H \rightarrow \Lambda p\pi$ mode

Anti-H $\rightarrow \overline{\Lambda p\pi}$ mode

Red : MC(with signal at BF[Y(1S)→HX] = 2.5*10⁻⁵level) Blue : Real Y(1S) data

NewHadron_busan

Systematic Error(%err only)

	lambdalambda	anti-lambdala mbda	lambdappi	anti-lambdap pi	
N(Y(1S))	2.3	2.3	2.3	2.3	bn1138
N(Y(2S))	3.6	3.6	3.6	3.6	bn1185
tracking	1.4	1.4	1.4	1.4	bn1165(high p)
Proton ID	4.3	4.3	6.58	6.58	ProtonID
pion ID:K	0	0	2.78	2.78	kid_eff6
momentumcut			1.7		MC study(Ξ⁻)
lambda recon	12	9	3	5	bn684
goodvee	3.4	2.6	0.5	1.6	bn684
M(lambda)	2	2	1	1	bn684
BF[lambda->pp i]	1	1	0.5	0.5	PDG
continuum	0.7	0.7	0.7	0.7	Belle page
chisq	2.5	2.5	2.8	2.8	MC study(Λλbar)
ct	2.5	2.5	2.7	2.7	MC study(Λλbar)
binning	1.8	1.8	1.8	1.8	MC study(Ξc)
resolution	2.6	2.6	2.6	2.6	MC study(Ξc)
fitrange	0.8	0.8	0.8	0.8	MC study(Ξc)
Acceptance(mc stat+efficency R)	2.4	8.2861329943	2.7	2.6	MC study(signal MC)
Total	15.1	15.0 New	H 10 9on_busan	11.4	15

χ^2 & ct Systematic error study

- For getting χ^2 cut efficiency we see loose cut χ^2 <250 and χ^2 <200 cut(what we used)
- For ct cut, we see without ct cut and ct>-0.5(what we used)

Combine $\Lambda\Lambda \& \overline{\Lambda\Lambda}$

A RooPlot of "BF*E06"

90%UL BF for H-dibaryon

Result

- Y(nS) decay well suited for production of state with multiple s-quark.
- No evidence for

 $H \rightarrow \Lambda p \pi^- (m < 2m_\Lambda)$

 $H \rightarrow \Lambda \Lambda$ (m<2m_{Λ})

- $BF[(Y(nS) \rightarrow HX)^*(H \rightarrow \Lambda p\pi)] \leq BF[Y(nS) \rightarrow DX]$
- \therefore factor $\leq 1/30$
- PRL in process

Thank you!