Single Plastic Edge Hill

Seungmok Lee
2019.12.27

Introduction

- When we detect muon using single plastic scintillator lying down, with pulse height threshold 200, hills appear at each edge.

Introduction

- From a close look at the pulse height, we could find 'something' arises near the PMT.

Introduction

- From a close look at the pulse height, we could find 'something' arises near the PMT.

Introduction

- What is the 'something'?
- Cherenkov Radiation from PMT lens?
- Other Particle?

Cherenkov Radiation

- Cherenkov radiation arises when a charged particle in a material medium moves faster than the speed of light in that same medium.
- Energy emitted per unit path length is

$$
\frac{-d E}{d x}=z^{2} \frac{\alpha \hbar}{c} \int \omega d \omega\left(1-\frac{1}{\beta^{2} n^{2}(\omega)}\right)<4 z^{2} \alpha \hbar \pi^{2} c \frac{\int d \lambda}{\lambda^{3}}
$$

- $z=1$ for muon, a is the fine structure constant, n is the refraction index.
- Leo, ‘Techniques for Nuclear and Particle Physics Experiments', $2^{\text {nd }}$ ed., Springer-verlag, pp. 35-37.

Cherenkov Radiation

Type No.	Assembly Dia. (mm)	PMT Dia. mm (inch)	$\begin{gathered} \text { Built-in } \\ \text { PMT } \\ \left(\begin{array}{c} \text { Type No. } \\ \text { for } \\ \text { referring } \end{array}\right) \end{gathered}$	B Curve Code	Wavelength (nm)
H7195	$\phi 60.0$	51 (2)	R329	400K	300 to 650

- Integrating over 300 nm to 650 nm yeilds

$$
\frac{-d E}{d x}<2 \alpha \hbar \pi^{2} c\left[\frac{1}{\lambda^{2}}\right]_{\lambda_{2}}^{\lambda_{1}}=0.025 \mathrm{MeV} / \mathrm{cm}
$$

- Relatively negligible!
- $-d E / d x$ for Polyvinyltoluene is $\sim 2 \mathrm{MeV} / \mathrm{cm}$.

Pulse Shape

- For more information, I observed the pulse shape.
- Pulse at center is clear landau form.

Pulse at center ($-0.05 \mathrm{~m} \sim 0.05 \mathrm{~m}$), Left PMT

Pulse Shape

- Pulse near PMT shows two landau peaks!

Pulse at center ($-0.85 \mathrm{~m} \sim-0.80 \mathrm{~m}$), Left PMT

Pulse Shape

- Pulse near PMT shows two landau peaks!
- New problem arises!

Secondary Peak Problem

- Three properties were observed.
- Secondary peak appears about 25 ns after the main peak.
- Secondary peak height is about 50 ~ 100 ADC, without correlation (at least with nonlinear correlation) with the main peak height.
- Secondary peak appears also at the center, but it becomes clearer near the PMT.

Secondary Peak Property

- Time

Secondary Peak Property

- Time

Secondary Peak Property

- Height

Two Peaks Height

Secondary Peak Property

- Height

Two Peaks Height

Secondary Peak Property

- Height

Two Peaks Height

Secondary Peak Property

- Position

Secondary Peak Property

- Position

Secondary Peak Property

- Position

Secondary Peak Candidate

- Delayed reaction of detecting material?
- Most reaction amplitude should be proportional to the energy loss of the particle, thus it should be proportional to the main peak height.
- Still have no clear idea / detail about this kind of reaction.

Secondary Peak Candidate

- New particle detected?
- Except the central part, almost every events have the secondary peak.
- This may not be the solution.

Hobin's Simulation

- Hobin gave me a simulation data.
- With 2 kinds of event,
- 1) Events at center
- 2) Events near PMT
counted the number of photons entering PMT.
- It gave the solution!

Hobin's Simulation

- There are second peaks.
- Maybe they are from the reflection.
- Events at center have faster second peak.
- Events near PMT have second peak much later.

Hobin's Simulation

- The secondary peak of central events would be buried by PMT response.
- This is why we could not see the secondary peak in the events at center.

Hobin's Simulation

- Secondary peak near PMT has smaller height
- Due to attenuation. Reflected ray travels further path.
- Would the secondary peak height follows the attenuation pattern?

Hobin's Simulation

- Secondary peak follows the attenuation pattern!
- Not qualitatively verified. It seems so.

Secondary Peak, So What?

- Will secondary peak give a hint about the edge hill problem?
- Maybe no.
- Second peak is too small to be counted as an individual event.

Summary

- The secondary peak is from the reflected signal!

- The edge hill problem is not solved yet...

