Likelihood ratio at different temperature

- Discrimination between upward and downward signal (digitized)
- $\mathrm{dt}<3$ cut $\& \mathrm{dt}>-80$ cut and $\sim 3 \mathrm{MeV}$ threshold
- Likelihood ratio is given by $\mathrm{Q}=\prod_{i=1}^{N} \frac{P_{u p}\left(x_{i}\right)}{P_{d w}\left(x_{i}\right)}$ and use -2logQ
- N is the \# of observed events set satisfying cut conditions.
- \# of annihilation of ref. data $=100 \mathrm{k}$
- \# of annihilation of val. data $=50 \mathrm{k}$

Reference PDF(cut on dt>-10)

Full reference PDF

Likelihood ratio $\cdot \mathrm{N}=200$

- One point represents 200 events set.

Likelihood ratio

- What I mistake was validation. Ref. data still shows possibility of discrimination.
- For this N , there is no clear separation over 1 mK for val. data.
- But, \# of entries of reference PDF seems too small.
- \# of events is too small to cover large N.
(with about 15000 val. data, 15 points of likelihood ratio can be calculated when $N=1000$. It is too small to represent distribution of likelihood ratio.)
- Now I am making 2 million reference and validation datas.
- The data making will be done about Friday.

Background rejection

- Exclusively separate 2 arrays, 3 arrays and 4 arrays hits
- Train MVA for 6 combination TL, TR, TB, LB, RB and LR, respectively.
- Output means signal (1) or background (0)
- 2 arrays hits

4 arrays hits

Background rejection

- Sum all results, then we get total output.

