Best Candidate Selection

BCS for $\Xi_c(2970)^+$ from $\Xi_c^{'0}\pi^+$

Taejin Moon 1 Nov, 2019

Ξ_c(2970)→Ξ_c'π

Best Candidate Selection

f) In the case of particles decaying to Ξ_c only one Ξ_c is allowed per event, to eliminate doublecounting in events with noise photons

< from p.1 of bn1380 v2.0 >

Because there is a good deal of background from noise "photons", there is a possibility of falsely enhancing any peak in Ξ_c / π distributions by having individual events enter the plots twice at similar total masses – once with the correct photon and once with a noise photon which is nearby. To reduce this effect, if there were multiple candidates in one event with the same transition pion but different $\Xi_c / \text{ candidates}$, only the one with the Ξ_c / mass closest to the peak value was used. This reduced the final signal by around 10% but did not significantly change the mass and width values obtained.

 $\Xi_c(2645) \rightarrow \Xi_c$ decay. It is possible for background photons, particularly of low energy, to combine with the Ξ_c ground states to make Ξ'_c candidates. Once constrained to the Ξ'_c mass, several such candidates in one event can combine with a pion from a higher state to make multiple entries in this plot, all at similar total masses. To avoid this, we require that if there are multiple Ξ'_c candidates of this type in an event, only the one with an unconstrained mass closest to the Ξ'_c mass is considered. This reduces the overall population of the plot by around 15%.

< from 9th page of the publication > J. Yelton et. al.,PRD 94, 052011 (2016)

π

< from p.24 of bn1380 v2.0 >

Logic for BCS

	Ξc'1	Ξc'2	Ξc'₃
π ₁	$\Xi_{\rm c}$ (2970) cand 1	-	(2970) cand 2
π2	_	(2970) cand 3	-
π3	_	-	-

- In a event,
- Among $\Xi_c(2970)$ candidates which come from $\pi + \Xi_c'$,
 - For each pion,
 - If there is only one Ξ_c ' partner, then flag==1 for $\Xi_c(2970)$ candidate 3
 - If there are multiple partners,
 - let $M(\Xi_c'_3)$ be closer to $\Xi c'$ mass than $M(\Xi_c'_1)$
 - then flag==1 for $\Xi_c(2970)$ candidate 2
 - then flag==0 for $\Xi_c(2970)$ candidate 1

Fitting Result

 $\Xi_{c}(2970)^{+} \rightarrow \Xi_{c}^{'0} \pi^{+} \rightarrow \Xi_{c}^{0} \gamma \pi^{+}$

Angle integrated data.

۲

•

.

Summary

- By applying BCS, total entries decrease by 22.6% and yields decrease by 25.7%
- Statistics and peak shape are still different.
 - Total entries and yields w/ BCS is 90.7% and 87.6% of those in the Yelton's publication result, respectively.
 - BCS doesn't change peak shape so much.