Best Candidate Selection BCS for E_{c} (2970)+ from $\mathrm{Ec}^{1}{ }^{0} \mathrm{~T}^{+}$

Taejin Moon

1 Nov, 2019

$\Xi_{c}(2970) \rightarrow \Xi_{c}{ }^{\prime} \pi$

Best Candidate Selection

f) In the case of particles decaying to $\Xi_{c} /$ only one $\Xi_{c} /$ is allowed per event, to eliminate doublecounting in events with noise photons

$$
\text { < from p. } 1 \text { of bn1380 v2.0 > }
$$

Because there is a good deal of background from noise "photons", there is a possibility of falsely enhancing any peak in Ξ_{c} / π distributions by having individual events enter the plots twice at similar total masses - once with the correct photon and once with a noise photon which is nearby. To reduce this effect, if there were multiple candidates in one event with the same transition pion but different Ξ_{c} / candidates, only the one with the $\Xi_{c} /$ mass closest to the peak value was used. This reduced the final signal by around 10% but did not significantly change the mass and width values obtained.
< from p. 24 of bn1380 v2.0 >

> | $\Xi_{c}(2645) \rightarrow \Xi_{c}$ decay. It is possible for background |
| :--- |
| photons, particularly of low energy, to combine with |
| the Ξ_{c} ground states to make Ξ_{c}^{\prime} candidates. Once |
| constrained to the Ξ_{c}^{\prime} mass, several such candidates in |
| one event can combine with a pion from a higher state to |
| make multiple entries in this plot, all at similar total |
| masses. To avoid this, we require that if there are |
| multiple Ξ_{c}^{\prime} candidates of this type in an event, only |
| the one with an unconstrained mass closest to the Ξ_{c}^{\prime} |
| mass is considered. This reduces the overall population of |
| the plot by around 15%. |

< from 9th page of the publication >
J. Yelton et. al.,PRD 94, 052011 (2016)

Logic for BCS

	Ec'1	三c'2	三c'3
π_{1}	$\bar{E}_{c}(2970)$ cand 1	-	$\mathrm{E}_{\mathrm{c}}(2970)$ cand 2
$\boldsymbol{\pi}$	-	Ec(2970) cand 3	-
$\pi 3$	-	-	-

- In a event,
- Among $\Xi_{c}(2970)$ candidates which come from $\pi+\bar{\Xi}^{\prime}$,
- For each pion,
- If there is only one $\Xi_{c}{ }^{\prime}$ partner, then flag==1 for $\Xi_{c}(2970)$ candidate 3
- If there are multiple partners,
- let $M\left(\Xi_{c^{\prime}}{ }_{3}\right)$ be closer to Ec^{\prime} mass than $\mathbf{M}\left(\mathrm{E}_{\mathrm{c}}{ }^{\prime}{ }_{1}\right)$
- then flag==1 for $\equiv_{c}(2970)$ candidate 2
- then flag==0 for $\equiv_{c}(2970)$ candidate 1

Fitting Result
 Angle integrated data.

	w/o BCS	w/ BCS	w/o \rightarrow w/	cf. Yelton's
Total Entries	8553	6622	-22.6%	~ 7300
Yield	997	740	-25.7%	845

- Mass : 2966.0 MeV/c² (fixed)
- width: 28.1 MeV/c (fixed)

- Cut condition

- $\quad x_{p}>0.7$
- Window for $M\left(E_{c}\right)$: $\pm 8 \mathrm{MeV}$
- $\quad E_{\gamma}>100 \mathrm{MeV}$
- Proper charge of π selected.
- X^{2} vertex fitting for $\equiv \mathrm{c}(2970)<30$
- Window for $M\left(\Xi_{c}\right): \pm 2 \sigma$

Summary

- By applying BCS, total entries decrease by 22.6% and yields decrease by 25.7%
- Statistics and peak shape are still different.
- Total entries and yields w/ BCS is 90.7% and 87.6% of those in the Yelton's publication result, respectively.
- BCS doesn't change peak shape so much.

