Measurement preparation for $\overline{H}(-ion)$ production cross-section from \overline{p} beam and Positronium

Seoul National University

BongHo Kim for the GBAR collaboration

KPS meeting 20161020

Contents

Motivation

GBAR overview

 $\Box \overline{H}$ + (Ortho) Ps $\rightarrow \overline{H}^+$ + e⁻ cross section measurement

CEA Saclay status

USummary

Motivation

 $\frac{The \ equivalence \ principle}{m_{I}} = m_{g}$ $m_{I} = \frac{F}{a}, m_{g} = \frac{F_{g}}{g} = F_{g} \frac{R^{2}}{GM}$

- The weak equivalence princle
- 'The trajectory of a point mass in a gravitational field depends only on its initial position and velocity, and is independent of its composition and structure'
- Verified for matter experiment from free-fall to torsion valance (Eotvos-type). ($\Delta m/m < 10^{-13}$)
- No experimental result for anti-matter's free falling except Alpha result (2013)

Previous anti-matter experiment – Alpha

Nature communications, 2787 (2013)

- Only one anti-hydrogen experiment was done Alpha experiment : -65 < F (= m_g/m_i) < 110 (95% significance level)
- No Anti-neutron experiment(hard to decelerate) 20/10/2016 KPS meeting 20

Red circle : real data (434 annihilation points)Green point : simulationBlack solid line : averaged simulation (F=100)Blue dotted line : averaged simulation with detector smearing(F=100)Plack dashed line : averaged simulation (F=1)4

Tow approaches : AEGIS vs GBAR

GBAR collaboration

P.N.Lebedev Physical Institute of the Russian Academy of Science

17 institutes from 9 countries

20/10/2016

GBAR overview

GBAR : Gravitational Behaviour of Antihydrogen at Rest

- Generating anti-hydrogens (No charge)

Traping or decelerating neutral anti-matter (ALPHA, AEGIS)

- 1. Generating anti-hydrogen ions
- 2. Decelerating anti-hydrogen ions
- 3. Detaching positron and antihydrogen free fall experiment
 - $\overline{p} + Ps^{(*)} \rightarrow \overline{H}^* + e^-$

$$\overline{H} + Ps^{(*)} \rightarrow \overline{H}^+ + e^-$$

Idea for GBAR

Beam line overview

$\Box \overline{H} \& \overline{H}^+$ production cross section measurement

Cross section measurement for

$$p + Ps^{(*)} \rightarrow H^{(*)} + e^+$$
$$H + Ps^{(*)} \rightarrow H^- + e^+$$

$$\overline{p} + Ps^{(*)} \to \overline{H}^+ + e^-$$
$$\overline{H} + Ps^{(*)} \to \overline{H}^+ + e^-$$

- ELENA facility will supply 100keV antiproton from 2017 (0.5x10⁷#(bunch)/110s)
- 10^{12} Ps/cm² (aim) \rightarrow below 1 \overline{H}^+ expected (/110s)
- : Dense Ps with well measured cross section for each Ps state is absolutely important. (two collisions by one (anti) proton in Ps cloud)
- We will Measure H and H⁺ ion production cross section (CEA Saclay) and compare this with theoretical expectation (IPCMS) in this year. (No experimental data yet (only one measurement for H production))

H& H⁻ production cross section measurement

Porous silica Target cavity and Ps formation

- Porous silica target cavity with Si₃N₄ membrane window for e+ beam (goal ~ 3keV, # ~ 10⁸e⁺/bunch).
- Ps cloud (KE ~70meV) will be generated inside target cavity (30~35% of e⁺ convert to Ortho-Ps)
- Ps will be reflected at the wall untill decay or escaping cavity.
- Adequate estimation for escaped Ps ratio is requred for optimization.
- Understaning reflection angle of Ps, measurement of Ps's kinetic energy is required.

PWO detector preparation

Specification

- 1 PMT + 4 PWO Crystal (2x2x3.8cm for each)
- Yield 0.7~2.6 [p.e./MeV] acheived with ²²Na source before cutting.
- Density : 8.3g/cm3
- Radiation length : 0.9cm
- Decay time : 10~30ns
- Good for high intensity beam measurement
- ightarrow Already used may experiments like

CMS, Alice, Penda or positronium detections..

- Efficiency ~100% achieved with 15ns FWHM
- Time spectroscopy method will be used to distinguish annihilation and para-Ps(125ps) background from Ortho-Ps signals (142ns).

(NIM A 580 (2007) 1338)

PMT

Attached by normal glue

Cover

bakelite

Ps measurement preparation

- Simulation has been developed to estimate Ps movement by adding new particle and process (Ortho-Ps) in Geant4 simulation.
- Escaped amount of Ps will be measured as setup in right panel.
- By adding W block in adequate position, we can measure reflecting angle distribution

Positronium distribution at simulation

Positronium decay position is simulation by Geant4 with cavity target

- Cosine (reflection) case : 89.6% of positroniums are remained in cavity before decay
- Isotropic case (reflection) : 72.7% of positronium remain in cavity before decay

CEA Saclay status

Given Status and Summary

- WEP for antimatter will be tested by antimatter's free fall experiment at GBAR.
- To make ultra cold \overline{H} for free fall experiment, dense Ps and measurement of cross section for each Ps state is required.
- $\sigma [p(H) + (Ortho) Ps \rightarrow H(H^+) + e^+]$ measurement is planned at CEA in this year.
- GBar is Scheduled to start measurement in 2017-2018.

Appendix

- Life time of Positronium
- τ(Ortho-Ps) : 142.5ns
- τ(Para-Ps) : 125ps
- τ(Ps(2p)) : 3.2ns
- τ(Ps(3d)) : 31ns
- Laser duration
- 410nm : ~50ns duration
- 243nm : repeatition every couple of ns

