Dark Matter Results from XENON100 Data

Yosuke Abe, Jaekeum Lee, Ganesh Tambave

<u>Outline</u>

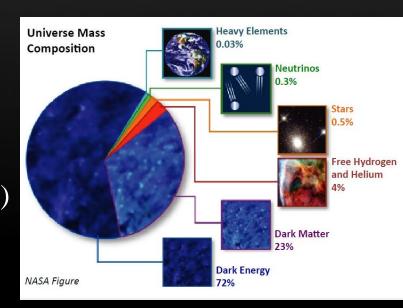
- Motivation
- Introduction
- Experiment
- Analysis results
- Summary and Conclusion

Motivation

- # Current research in cosmology centers on resolving these questions:
- # What is the nature of dark matter?
- # How much dark matter actually exists?
- # What is the exact distribution of dark matter in the universe?
- # Answers to these questions will improve our understanding of the origins, structure and fate of the universe.

Introduction to Dark Matter

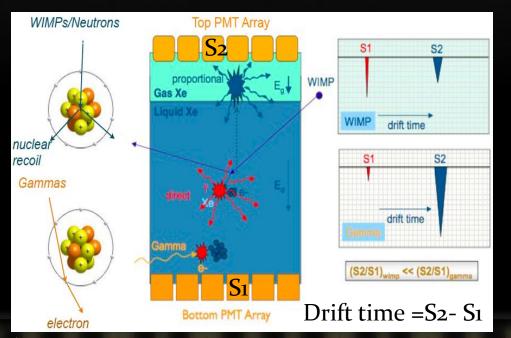
"dark matter" is matter that neither emits


nor scatters light or other em radiation

- # Thus cannot be detected directly
- # But can be detected through their
- Coherent scattering off target nuclei (e.g. Xe)
- # "WIMP" is one of the major constitute of

Dark matter.

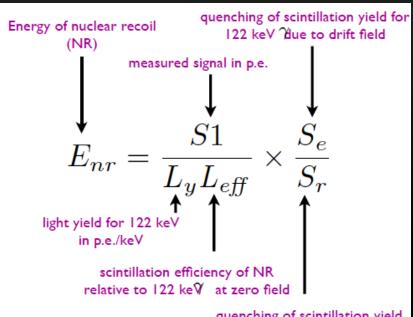
The expt. like CDMS, EDELWEISS,


XENON100 made an attempt to detect WIMP.

XENON100 two-phase TPC

The simultaneous detection of charge and light signals provides discrimination between

- Expected WIMP-induced Nuclear Recoils (NRs) signal
- Interactions from the electromagnetic background in the form of Electronic Recoils (ERs)
- 3D interaction vertex reconstruction



<u> 15 November 2011</u>

Scintillation efficiency of NRs

quenching of scintillation yield for NR due to drift field

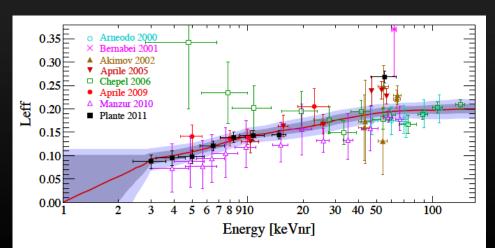


FIG. 1: All direct measurements of $\mathcal{L}_{\rm eff}$ [12, 13] described by a Gaussian distribution to obtain the mean (solid line) and the uncertainty band (1 σ and 2 σ). Below 3 keV_{nr} the trend is logarithmically extrapolated to $\mathcal{L}_{\rm eff} = 0$ at 1 keV_{nr}.

Acceptance of all data quality

Energy window for WIMP search: 8.4- $44.6~{
m keV}_{
m nr}$

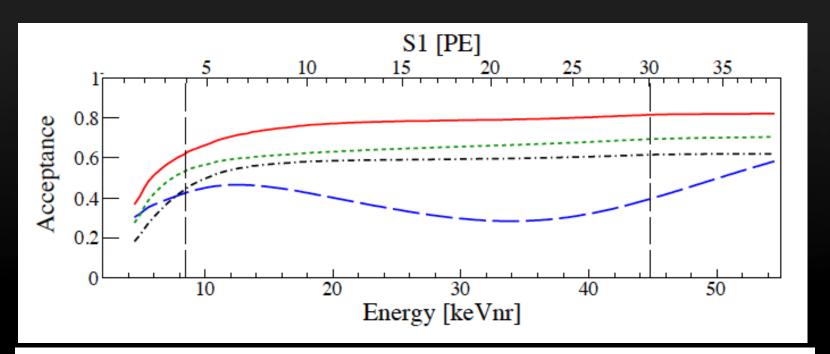
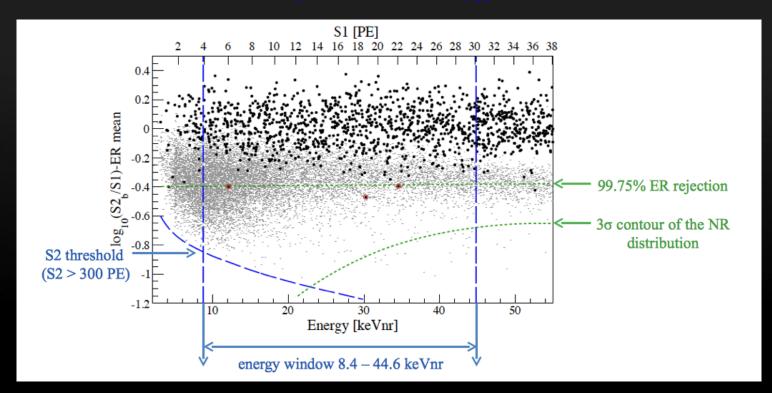
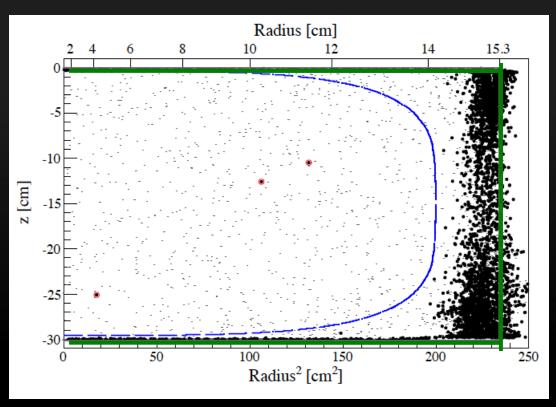



FIG. 2: Acceptance of all data quality cuts used for the analysis for $m_{\chi} \geq 50 \text{ GeV}/c^2$ (solid red), $m_{\chi} = 10 \text{ GeV}/c^2$ (dotted green), $m_{\chi} = 7 \text{ GeV}/c^2$ (dash-dotted black). The optimum interval analysis additionally uses a S2/S1 ER discrimination cut. Its NR acceptance is also shown (dashed blue).

Event distribution using discrimination parameter

Discrimination parameter = Log_{10} (S2/S1)

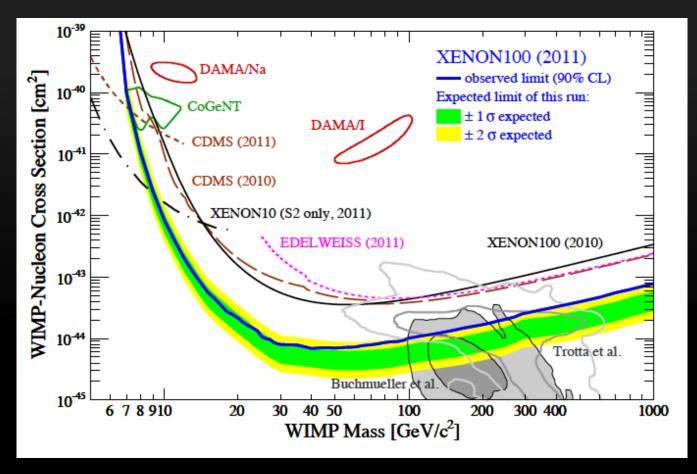


Black dots - observed events

Gray dots - NR band from 241AmBe calibration data

Blue dashed line - WIMP search region, Green line - additional NR and ER cuts Red circles - WIMP candidate events

Event distribution in TPC


Black dots - events below the 99.75% rejection line in energy window

Blue dashed line - fiducial volume of TPC

Green dashed line - TPC dimensions

Red circles - WIMP candidate events

Spin- independent elastic WIMP-nucleon cross-section vs. WIMP mass

Thick blue line - XENON100 limit @ 90% CL

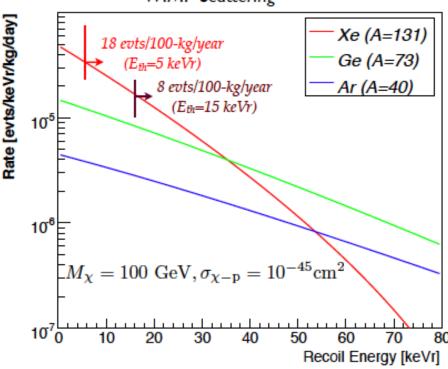
Yellow/green band - Expected sensitivity

Summary and conclusion

- # XENON100 took 100.9 live days of data
- # Three candidate events were observed in signal region with expected background of (1.8±0.6) events
- # No evidence for dark matter is found
- # Leads to the most stringent limit on dark matter interactions today

15 November 2011

Thank you all!


Special thanks to FAPPS committee for organizing such a nice school.

Liquid Xenon for Dark Matter

- ◆ scalability: relatively inexpensive for very large detector (today < \$800/kg)
 </p>
- ◆Large mass number (A~131): high rate for SI interactions if NR threshold is low
- →~50% odd isotopes: SD interactions
- ◆ Excellent Stopping Power: active volume is shelf-shielding
- **◆**Excellent Scintillator and Ionizer: highest yield among noble liquids
- ◆Intrinsically pure: no long-lived radioactive isotopes; Kr/Xe reduction to ppt level with established methods
- ◆NR Discrimination: by simultaneous charge and light measurement

$$R \sim \frac{M_{det}}{M_{\chi}} \rho \sigma \langle v \rangle$$

WIMP Scattering

