GBAR TOF Final Configuration Simulation Improvement

Seoul National University

Improvement

Originally, an annihilation of a pbar occurs at the top or bottom flange center

Add physical process

- 1. Thermal energy of Hbar+ ion
- 2. Momentum from laser
- 3. Recoil momentum from positron detachment
- 4. Free fall under the gravity
- 5. Set the chamber hit position to an annihilation position

Improvement

Direction denotes the direction of the motion under the gravity Annihilation Position r vs z

ΔT Distribution Change

- Pbar annihilation : 5×10^5 events
- Cosmic ray : (500ms / pbar annihilation event)
- Denote 500ms as the event window.
- One pbar is annihilated within an event window.

- About 5500/(10m x 10m) cosmic rays are generated at 1m above from the FFC center within an event window.
- To integrate the background rejection in the future, Set the trigger window (128 ns).
- If a hit at the TOF detector occurs, a trigger is started.
- $\Delta T = T_{Bottom \, fastest \, TOF \, hit} T_{top \, fastest \, TOF \, hit}$ within a trigger
- R(histogram filling ratio) = (# of triggers with the T-B hits combination) //# of total triggers)

/(# of total triggers)

ΔT Distribution Change

• Since the trigger window is much wider than resolution, R remains almost the same when the resolution is changed

Average # of	Old		New		Cosmic ray
trigger per event window	Up	Down	Up	Down	
0	2.90	2.20	2.44	2.12	206
0.1	2.90	2.20	2.44	2.12	206
0.2	2.90	2.20	2.44	2.12	206

R table	Old		New		Cosmic ray
Resolution	Up	Down	Up	Down	
0	0.327	0.273	0.327	0.273	0.172
0.1	0.327	0.273	0.327	0.273	0.172
0.2	0.327	0.272	0.327	0.273	0.172

ΔT Distribution Change (resolution: 0 ns)

ΔT Distribution Change (resolution: 0.1 ns)

ΔT Distribution Change (resolution: 0.2 ns)

Distribution Broadening (resolution :0ns)

Because of the Z position of the annihilation

Upward direction

Downward direction

Z Position of Ann. [mm]

T_{hot}-T_{top}[ns]

Distribution Broadening (resolution: 0.1ns)

Because of the Z position of the annihilation

Distribution Broadening (resolution 0.2ns)

___0~5 cm

- 5 ~ 10 cm

- 10 ~ 15 cm

- 15 ~ 20 cm 20 ~ 25 cm

25 ~ 30 cm

5 10 T_{bot} - $T_{top}[ns]$

-20 ~ -10 cm

10 ~ 20 cm

10

10

T_{bot}-T_{top}[ns]

 Because of the Z position of the annihilation dt with Different Range of R

