Muon Scintillator Time Calibration Study 3

2019.11.29 Seungmok Lee

Time Calibration Study – Summary

- Last time I observed
 - i) $f_1 f_0$: Distribution of signal flight time difference to both sides in a scintillator. It had no dependency on its direction.
 - ii) Δ : Event occurring time difference between two adjoining scintillators. Muon velocity was measured as $v = (0.978 \pm 0.608) c$.

Time Calibration Study – Problem

- Last time I observed
 - i) $f_1 f_0$ Distribution showed asymmetric behavior.
 - ii) v_{μ} had too large error. $v_{\mu} = (0.978 \pm 0.608) c.$

$f_1 - f_0$ Distribution Asymmetricity

- With more data (~1M), the asymmetricity vanished.
- However, it was not flat at all. There are inclines at both ends.
 - Plastic B bar only.
 - No coincidence trigger.
 - Port number 4
 - Data number: 1,067,364
 - THR: 200 ADC
 - 2019.11.25 night ~ 11.26 morning

BSelf001_20191125_ch1_LRAsymmHist

$f_1 - f_0$ Distribution Asymmetricity

- With more data (~1M), the asymmetricity vanished.
- However, it was not flat at all. There are small hills at both ends.
 - Plastic B bar only.
 - No coincidence trigger.
 - Port number 4
 - Data number: 1,067,364
 - THR: 200 ADC
 - 2019.11.25 night ~ 11.26 morning

BSelf001_20191125_ch1_LRAsymmHist

$f_1 - f_0$ Distribution

• Other data (with coincidence condition) also showed un-flat behavior.

$f_1 - f_0$ Distribution – Unflatness

- For B bar, the shape in $f_1 f_0$ distribution seems due to its threshold and attenuation of the signal intensity.
- If a muon hits near on PMT, then its signal to the other side PMT is attenuated, so some of the events are being missed.

2019-11-29

$f_1 - f_0$ Distribution – Unflatness

- But it is not for 3 bars data.
- The threshold for this experiment is not enough to explain its shape.

Seungmok Lee, SNU, Seoul

$f_1 - f_0$ Distribution – Small Hills

- There was one more mystery small hills.
- The reflection of signal on the edge of plastic is suspected, but not clear.

2019-11-29

$f_1 - f_0$ Distribution – Conclusion

- Threshold 200 ADC for single plastic bar would be too high.
- But, the reasone for $f_1 f_0$ distribution shape is not clear.

v_{μ} Measurement

- Tried to plot the time delay vs distance graph directly.
- Distance was assumed as $s = \sqrt{(0.1m)^2 + \Delta x^2}$. The thickness of the plastic was ignored.

Time Delay vs Distance Plot

- The result was awful. Plot is so noisy.
- Line was fitted as below. It means $\beta_{\mu} = (1.898 \pm 0.369)c.$ $t[ns] = (1.757 \pm 0.425)[ns/m]s + (30.293 \pm 0.052)[ns]$

2019-11-29

Time Delay vs Distance Plot

• Event cut is inevitable!

2019-11-29

Seungmok Lee, SNU, Seoul

16