Paper Reading

December 03, 2018

Production of X(3872) at **P**ANDA

Phys. Rev. D 77, 097501 (2008)

December 03, 2018

Seoul National University

Jaekeum Lee

The *X*(3872) **State**

- A charmonium(-like) state found in $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ by Belle (2003)
- confirmed by experiments of Babar, CDF and D0.
- narrow ($\Gamma_{X(3872)} \le 1.2$ MeV at 90% C.L.) and closed to the $D^0 \overline{D}^{*0}$ threshold (m_x = 3871.68 ± 0.17 MeV)
- $J^{PC} = 1^{++}$ determined by LHCb (2012)
- The structure of X(3872) is still unclear.
- Possible interpretations
 - a loosely-bound molecule of D-mesons : $D^0\overline{D}^{*0}$
 - a 2P charmonium state $\chi_{c1}(2P)$

Charmonium Production in $\overline{p}p$ collisions

- In e^+e^- experiments only neutral $J^{PC} = 1^{--}$ resonances can be directly produced, and production of exotic charmed states through other mechanisms is suppressed.
- In $\bar{p}p$ experiments direct production of exotic resonant states with various quantum numbers, including charged ones is possible.

 e^+e^- collisions

 $\overline{p}p$ collisions

PANDA experiment

- \overline{P} ANDA (Anti-Proton ANnihilation at DArmstadt)
- The future experiment at FAIR (Facility for Antiproton and Iron Research) at GSI in Darmstadt (Frankfurt, Germany).
- fundamental questions of hadron and nuclear physics in the interactions of antiprotons with nucleons and nuclei.
- very high intensity antiproton beam with momentum ranging from 1.5 GeV/c to 15 GeV/c on a fixed proton target ($2.2 \le \sqrt{s} \le 5.5$ GeV)
- high reaction rates 2×10^7 interactions/s and high mass resolution 20 times better compared with the B-factories.
- \rightarrow suited for charmonium studies thanks to the high capability rate and the excellent mass resolution
- complementary to the studies performed at B-factories.

PANDA experiment at FAIR

HESR (High Energy Storage Ring) with PANDA

For Antiprotons

 Antiprotons are produced by a secondary target and then stored and cooled in the HESR (High Energy Storage Ring).

Two HESR operation modes

High intensity mode	High resolution mode	
10 ¹¹ antiprotons stored	10 ¹⁰ antiprotons stored	
stochastic cooling	electron cooling	
$p \ge 1.5 \; GeV/c$	$1.5 \le p \le 8.9 \; GeV/c$	
\mathcal{L} up to $2 \cdot 10^{32} cm^{-2} s^{-1}$	L up to $2 \cdot 10^{31} cm^{-2} s^{-1}$	
$\Delta p/p = 10^{-4}$	$\Delta p/p = 10^{-5}$	

Three different types of targets under discussion

- hydrogen pellets :
 - 10¹⁵ atoms/cm³
 - a peak luminosity of $\mathcal{L} = 2 \times 10^{32} \ cm^{-2} \ s^{-1}$ ($\cong 2 \times 10^9 \ J/\psi$ per year)
- a cluster jet target
- fixed nuclear targets : *Be*, *C*, *Si* or *Al*.

PANDA Detector Overview

Charmonium Width Measurements

- The resonance scan with the cooled beam could provide a measurement of the X(3872) width.
- The technique pioneered by the Fermilab experiments E760 and E835.
 - Measurement of the J/ψ and ψ' resonance parameters in $\bar{p}p$ annihilation
 - beam momentum resolution $\Delta p/p = 2 \times 10^{-4} \rightarrow \sqrt{s}$ FWHM resolution ≈ 0.5 MeV.

 $\Gamma(\psi') = 306 \pm 36 \pm 16 \text{ keV}$

E760 Collaboration, Phys. Rev. D 47 (1993) 772

Estimates for the X(3872) Cross Section at **PANDA**

Detailed balance method:

$$\sigma[\bar{p}p \to R] \cdot BR(R \to f) = \frac{(2J+1) \cdot 4\pi}{s - 4m_p^2} \cdot \frac{BR(R \to \bar{p}p) \cdot BR(R \to f) \cdot \Gamma_R^2}{4(\sqrt{s} - m_R)^2 + \Gamma_R^2}$$

• resonance R = X(3872), spin parity $J^p = 1^+$

$$\sigma[\bar{p}p \to X(3872)] \cdot BR(X(3872) \to f) = \frac{3 \cdot 4\pi}{s - 4m_p^2} \cdot \frac{BR(X(3872) \to \bar{p}p) \cdot BR(X(3872) \to f) \cdot \Gamma_{X(3872)}^2}{4(\sqrt{s} - m_{X(3872)})^2 + \Gamma_{X(3872)}^2}$$

• $\sqrt{s} = m_{X(3872)} = 3.872 \text{ GeV/c}^2$

$$\sigma[\bar{p}p \to X(3872)] = \frac{3 \cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot BR(X(3872) \to \bar{p}p)$$

• $BR(X(3872) \rightarrow \bar{p}p)$ published by LHCb (2013)

$$\sigma(\bar{p}p \to X(3872)) < (68 \pm 0.4) \ nb \ (95\% \ C.L) \ ; \ \sigma(\bar{p}p \to X(3872)) = 50 \ nb$$

The expected X(3872) production rates per day

	high luminosity mode	high resolution mode	
Resonance	$\mathcal{L}=8.64\ pb^{-1}/day$	$\mathcal{L}=0.864pb^{-1}/day$	$\mathcal{L} = 0.432 \ pb^{-1}/day$
X(3872)	432000	43200	21600

E. Prencipe, J. Lange, and A. Blinov, AIP Conference Proceedings 1735 (2016) 060011

Resonance Scan of X(3872) at **P**ANDA

Resonance Scan of X(3872) at **P**ANDA

Background Simulation for X(3872) Resonance

 $\bar{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+ \pi^-$

 E_{CM}

Resonance Scan of X(3872) at **P**ANDA

- Reconstructed width of 86.9 ± 16.8 keV is consistent with input width of 100 keV.
- $\overline{P}ANDA$ is well suited for resonance scan investigations of narrow resonances which can be directly formed in $\overline{p}p$.
- $\overline{P}ANDA$ will be able to either measure $\Gamma_{X(3872)}$ or at least significantly improve the current upper limit of $\Gamma_{X(3872)} \leq 1.2$ MeV at 90% C.L.