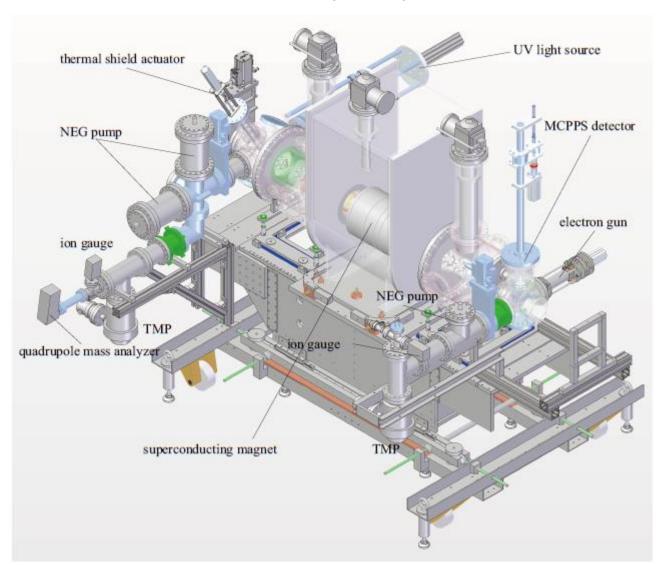
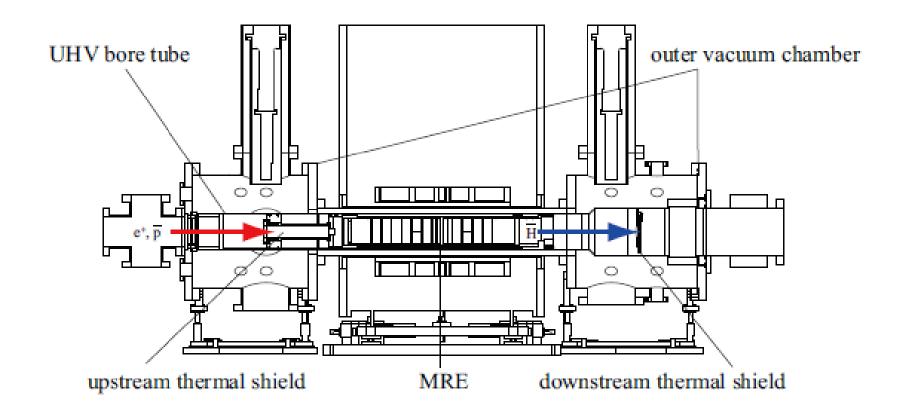

Vacuum System for GBAR antiproton trap

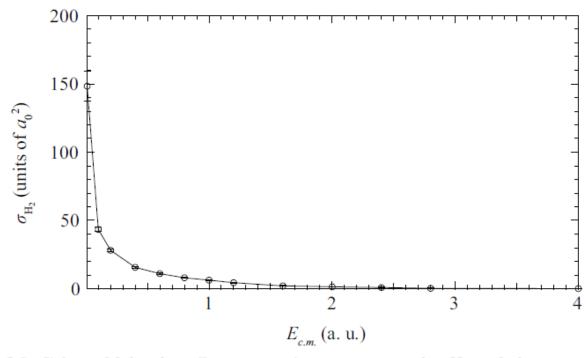
Won Dong Hwan
Seoul National University
10.Feb.2017


Contents

- 1. GBAR antiproton trap-Vacuum
- 2. Cusp Trap
- 3. Why UHV is needed
- 4. UHV Pumps
- 5. UV Light Source


GBAR antiproton trap-Vacuum

Cusp trap

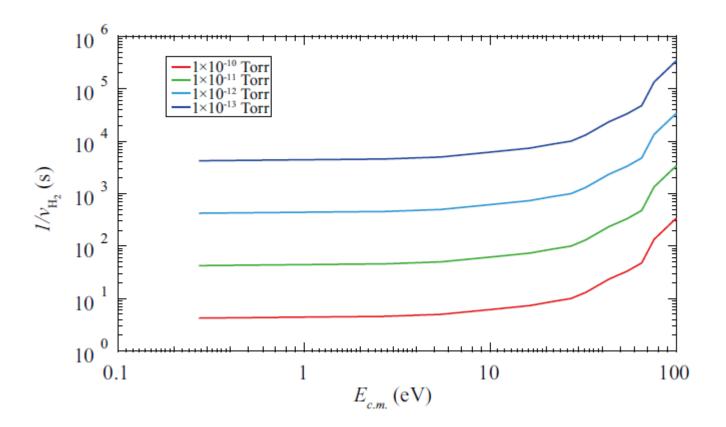

A cross sectional drawing of the cusp trap

Why UHV is needed

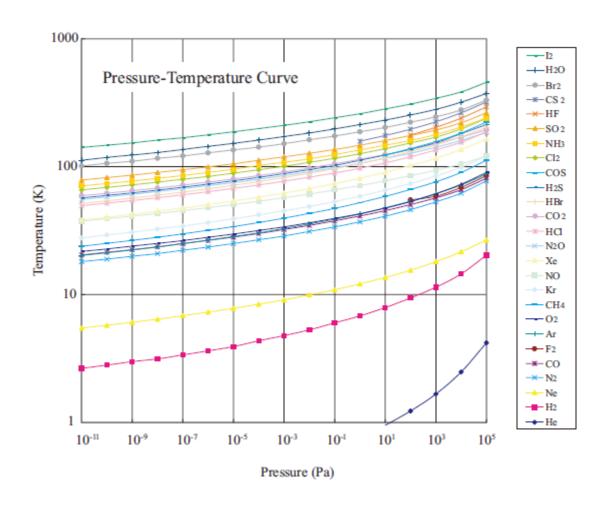
Collision frequency : $u_{H_2} = \sigma_{H_2} v n(/\mathrm{s})$

Cross section of hydrogen molecule and antiproton:

$$a_0^2 = 2.5 \times 10^{-21} \, (m^2)$$


a. u. =
$$931.494 (MeV/c^2)$$

J.S. Cohen. Molecular effects on antiproton capture by H_2 and the states of $p\bar{p}$ formed.

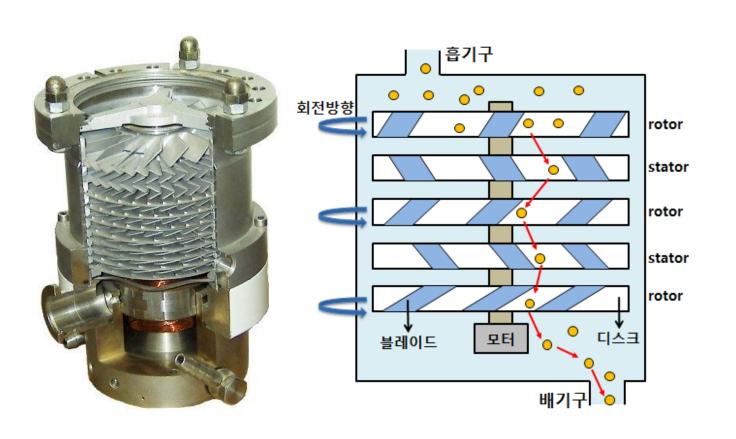

Physical Review A, 56(5):3583, 1997.

Number density of the hydrogen molecules : n = N/V = P/kT

Mean free time $(1/v_{H_2})$ of antiproton for several different hydrogen pressures

Relation between temperature and vapor pressure of various gases

List of vacuum pumps and gauges(Cusp)


description	manufacturer	type
Main TMP	Shimadzu	TMP-303M
backing TMP	Varian	V-81
backing rotary vane pump	Edwards	RV5
NEG pump	Saes	CapaciTorr D400-2
Nude ion gauge	Yamamoto	VX-200B
full range gauge (B-A ion/Pirani)	Pfeiffer	PBR 260

Upstream side

description	manufacturer	type
Main TMP	Shimadzu	TMP-303
backing TMP	Varian	V-81
backing rotary vane pump	Edwards	RV5
NEG pump \times 2	Saes	CapaciTorr B1300-2 MK5
quadrupole mass analyser	Anelva	M-066 QG
full range gauge (B-A ion/Pirani)	Pfeiffer	PBR 260

Downstream side

TMP(Turbo molecular pump)

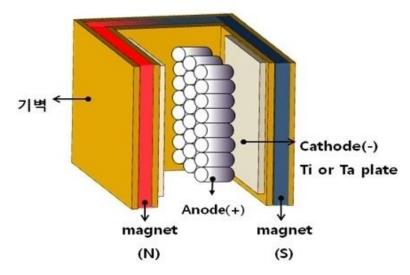
Clean mechanical compression pump.

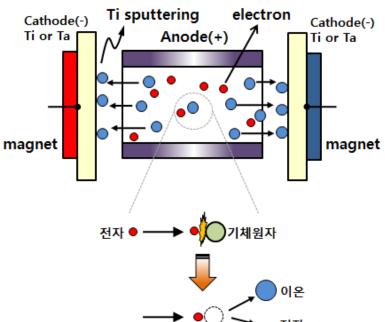
The only purely mechanical vacuum pump that can reach pressures of less than $5x10^{-10}$ Torr.

Ideal for uses where a vacuum relatively free of hydrocarbons is a must.

The turbo pump cannot exhaust directly to atmosphere. Though usually backed by a rotary mechanical pump.

Contribute little vibration to the operating system.


Non-Evaporable Getter(NEG pump)



Non evaporable getters (NEG), based on the principle of metallic surface sorption of gas molecules, are mostly porous alloys or powder mixtures of Al, Zr, Ti, V and Fe. They help to establish and maintain vacuums by soaking up or bonding to gas molecules that remain within a partial vacuum. This is done through the use of materials that readily form stable compounds with active gases. They are important tools for improving the performance of many vacuum systems.

Ion pump

An ion pump (also referred to as a sputter ion pump) is a type of vacuum pump capable of reaching pressures as low as 10^{-10} Torr under ideal conditions. An ion pump ionizes gas within the vessel it is attached to and employs a strong electrical potential, typically 3–7 kV, which allows the ions to accelerate into and be captured by a solid electrode and its residue.

TMP-300M

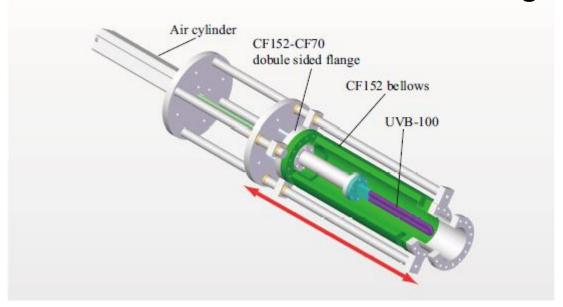
Turbo molecular pump		TMP- 303LM	TMP- 303LMC	TMP- 303M	TMP- 303MC	
Inlet flange		VG10	VG100 / ICF152 / ISO100B / ISO100C			
Outlet flange		KF25				
Cooling method		Water Cooling fa		ng fan		
Ultimate pressure (after (Note1)	baking)	10 ⁻⁸ Pa 10 ⁻⁷ Pa 10 ⁻⁸ Pa order order		10 ⁻⁷ Pa order		
Maximum allowable inle (N ₂ continuous exhaust)	aximum allowable inlet pressure 1 ₂ continuous exhaust)		200 Pa		1.3 Pa	
Maximum allowable outl	et pressure	400 Pa 40 Pa		Pa		
Pumping speed (Note 2)	N ₂	320 L/s				
	Не	340 L/s				
	H ₂	320 L/s				
Compression ratio	N ₂	1 x 10 ⁹				
	Не	8 x 10 ⁴				
	H ₂	1 x 10 ⁴				

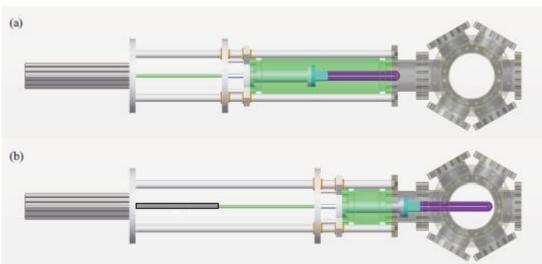
Rated speed		45000 rpm	
Start-up time		5 minutes or less	
Mounting position		In any desired direction	
ake-out temperature at an inlet flange		120 degrees C. or less	
Vibration level (by Shima	bration level (by Shimadzu's method)		s (0-peak)
ecommended flow rate of purge gas		20 to 30 mL/min (Note 3)	
Recommended pumping case of gas purge	speed of backing pump in	200 L/min or	more
Environmental Temperatures		0 to 40 degrees C.	
Admissible ambient	Radial direction	3 mT	
magnetic field	Axial direction	15 mT	
Water	Flow rate	1 to 3 L/min	
	Pressure	0.2 to 0.5 MPa	2
	Temperature	5 to 30 degrees C.	
Mass		14 kg	

NEG pump-Saes 社 CapaciTorr D400-2, B1300-2 MK5

Typical Pump Characteristics

J1	<u> </u>	
Alloy Type		St 172®
Alloy Composition		ZrVFe
Getter Mass(g)		45
Getter Surface (cm²)		380
Pumping Speed (I/s)	H ₂	400
	СО	180
Sorption	H ₂	900
Capacity (Torr I)	CO Room Temperature	0.9
	CO Total	400
Note: Pumping speed data refer to the initial values of the pump		


Note: Pumping speed data refer to the initial values of the pump without the pump body. CO capacity based on speed below 20 l/s.


Typical Pump Characteristics

Alloy Type		St 185*
Alloy Composition		TiV
Getter Mass(g)		560
Getter Surface (cm²)		5530
Pumping Speed (I/s)	H ₂	1300
	СО	1000
Sorption	H ₂	18000
(Torr I)	CO Room Temperature	6
	CO Total	5400

Note: Pumping speed data refer to the initial values of the pump without the pump body. CO capacity based on speed below 50 l/s.


UV light source

RDB instruments, UVB-100

Thank You