Review: Transition-edge microcalorimeter for tritium beta decay

L.S. Erhardt, D. Deptuck, J.P. Harrison, Nuclear Instruments and Methods in Physics Research A, 444 (2000) 92-95

Kim, Hanbeom

Detector Design

- Constructed on a 1" diameter silicon wafer
 - A three-step, lift-off, photolithography process
 - 1 & 2: thermal evaporation and lift-off patterning of Au and Al part
 - 3: production of Al/Ag Bilayer TES(transition-edge sensor)

Detector Design

TES

- By thermal evaporation
 - One evaporator with two thermal sources
- 30 nm Ag 18 nm Al 0.2 nm Ag

Mountation

- A mixing chamber of a dilution refrigerator
 - A base temperature ≈ 45 mK

Detector Design

- Tritium-implanted copper foil
 - Implantation ³He(n,p)³H nuclear reaction
 - Neutron capture
 - ${}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + p$
 - Q-value: 765 keV
 - Emitted tritium: 191 keV
 - Deposited up to a depth of 1.2 μm(copper foil: 12.5 μm thick)
 - Folded in half
 - Soldered to the gold absorber pad with indium

- Superconducting Al/Ag bilayer
 - T_c between 35~90 mK
 - Sensitivity $\alpha = \frac{T}{R} \frac{dR}{dT} \approx 11$ (complete device)

• Bias curve

Tritium pulses

- Detectable, but at a count rate 3 orders of magnitude lower than expected
 - Possibly due to liberation during soldering
 - Can be resolved by more implantation
- The shape
 - The rise time: $4^{\sim}10 \mu s$
 - Two main pulse shapes
 - Both have two decay times
 - Short: 40~500 μs
 - Long: 0.3~2.5 ms

- The collective tritium spectrum
 - an exponentialfilter using a rise time of 80 ls and a single fall time of 1.6 ms

Discussion

- To set a neutrino mass limit on the order of 10 eV, the speed of this device will have to be improved
 - Shorter rise time -> 0.1 μs
 - Higher count rate -> supply the necessary statistics near the end-point of the beta spectrum
 - Shorter fall time -> \sim 100 μ s
- Methodology:
 - Make the device small
 - Use non-superconducting soldering
 - Improve the thermal sinking