Measurement of Quenching factor and PSD power of NaI crystal

2016. 7. 18. Han-wool Joo

- What is Quenching Factor?
- Experimental setup
- Preliminary result
- Summary & Plans

 In scintillation crystals, the light yields from electron and nuclear recoils of the same energy are different.

 $Quenching Factor = \frac{Light yield from nuclear recoil}{Light yield from electron recoil}$

Measured energy from scintillation

Nuclear recoil energy (Initial energy of scattered ion)

- Calibration : use gamma source -> electron recoil
- Interaction with dark matter : Nuclear recoil

Experimental Setup

Neutron Generator

• The fusion process of making neutrons $(1\times10^8 / s)$ D + D \rightarrow n + ³He (Q = 3.27 MeV)

$$E_n^{1/2} = \frac{1}{M_{He} + M_n} \left[\sqrt{M_d * M_n * E_d} * \cos \theta + \sqrt{M_d * M_n * E_d} * \cos^2 \theta + (M_{He} + M_n) \left[(M_{He} - M_d) E_d + M_{He} * Q \right] \right]$$

Trigger logic

Threshold voltage

- PMT : 10 mV
- Neutron Detectors : 50 mV

Pulse width trigger for neutron detector

• Neutron detectors : 10 ns

Pulse count trigger for NaI crystal

Two or more pulses in each PMT
& Sum of pulse count of PMTs is larger than four within 400 ns

1. Timing cut for PMTs

- Time difference between two PMTs < 0.2 (μ s)
- Start position of signal > 2.0 (μ s) (Trigger Position : 3 μ s)
- 2. Charge Asymmetry cut for PMTs (-0.6 < charge asymmetry < 0.6)

3. Neutron Detector PSD

4. Time of flight

X axis : Time difference between NaI signal and ND signal

Na recoil event

Gaussian fit (3 ~ 20 keV)

Mean = 11.26 Sigma = 3.67

I recoil event

Poisson fit (0.2 ~ 1.5 keV)

Mean = 0.76 Sigma = 0.87

Simulation with Geant4

Simulation with Geant4

Upper View

Front View

Side View

Blue : PMT (R12669) Red : PMT Holder (with Al Plate x2 & Al Stick x4)

Simulation with Geant4

Na recoil event

Gaussian fit (45 ~ 80 keV)

Mean = 63.05 Sigma = 5.93

I recoil event

Poisson fit (8 ~ 15 keV)

Mean = 11.42 Sigma = 1.09

Preliminary Result

Trigger efficiency

Energy (keV)

Some events with low energies can be thrown away by trigger condition

-> Estimated quenching factor is large than real value.

- Quenching factor for NaI crystal was measured for recoiled sodium from 10 to 100 keVnr (14~20%) and for recoiled iodide from 10 to 75 keVnr (5~7%)
- Additional analysis
 - Trigger efficiency for NaI signals at low energy region
- Additional measurement with other crystals
 - With different dopant, size, etc...

Setup to measure Quality factor of NaI crystal

Setup to measure Quality factor of NaI crystal (set2)

For clusters with time0x[n] < det0.t0 + 1.5

$$MT = \frac{1}{2} * \left(\frac{\sum \text{clust00[n]}*(\text{time00[n]}-\text{det0.t0})}{\sum \text{clust00[n]}} + \frac{\sum \text{clust01[n]}*(\text{time01[n]}-\text{det0.t0})}{\sum \text{clust01[n]}}\right)$$
$$= \frac{1}{2} * \left(\frac{\sum \text{clust00[n]}*\text{time00[n]}}{\sum \text{clust00[n]}} + \frac{\sum \text{clust01[n]}*\text{time01[n]}}{\sum \text{clust01[n]}}\right) - \text{det0.t0}$$

clust0x[n]	: charge sum of n th cluster of PMT x
time0x[n]	: mean time of n th cluster of PMT x
det0.t0	: mean time of 1^{st} cluster of NaI signal

In(MT) – Neutron generator - KRISS

(Fit with Bi-Gaussian)

5~6 keV

6~7 keV

7~8 keV

8~9 keV

In(MT) summary (temp)

*For neutron generator data, generator was operated about 45 hours. -> \sim 1,000 events/keV in 1~9 keV region

NaI deposit energy vs. ToF (NaI~ND / SNU Am/Be)

Compton : ~5% of Photoelectric

& assuming scattered gamma is uniformly distributed in 0~40 keV

-> There are only 11 gamma events per 1 keV (~1 %) (9,000 * 0.05 * 0.025)

Not sufficient to explain difference in SNU and KRISS result

Calculated visible energy of I recoil events < 10 keV

(energy of neutron < 8 MeV)

X axis : Neutron scattering angle Y axis : Cross section (data from ENDF)

Deposit energy on NaI

Deposit energy on NaI

ND3

In(MT)

- Measured PSD power of NaI crystal
- Different result with SNU result (same crystal)
- Found problem in DAQ trigger condition
 - -> DAQ is ongoing with fixed trigger condition (Still different with SNU data)

Backup Slides

Measured neutron beam energy with 50cm (5cm diameter) He3 detector

Thermal neutrons (191 keV proton escape edge / 763 keV full energy peak)

Neutrons from generator (³He recoils / ³He (n,p) ³H)

Energy differe nce (MeV)	Proton escape		Thermal n full energy peak		3He recoil		p+t full energy peak		Const.	Slope	χ²/ndf
	Data	Sim	Data	Sim	Data	Sim	Data	Sim			
- 0.1	93.4 ± 2.79	191 ± 5.73	393 ± 8.92	763 ± 22.89	952.8 ± 28.56	1785 ± 53.6	1713 ± 41	3,136 ± 94.1	17.46	1.86	0.38
- 0.05						1823 ± 54.7		3,186 ± 95.6	14.54	1.89	0.09
± 0			.,			1860 ± 55.8		3,236 ± 97.1	11.67	1.92	0.20
+ 0.05	.,	.,	,,	.,	.,	1898 ± 56.9	.,	3,286 ± 98.6	8.78	1.94	0.74
+ 0.1						1936 ± 58.1		3,333 ± 100.0	5.99	1.97	1.57

Neutron Beam energy = 2.43 ± 0.03 (MeV)

X axis : Neutron energy difference Y axis : chi-sqr / ndf