Observation of $\mathrm{J} / \psi p$ resonances consistent with pentaquark states in $\Lambda_{b}^{0} \rightarrow \mathrm{~J} / \psi K^{-} p$ decays

Pentaquark

- Pentaquark is a particle which consists of four quarks and a antiquark.
- There were a few experiments results asserting discovery of pentaquarks.
- In 2015, LHCb has found the charmonium-pentaquark states.

Decay chain

Dalitz plot

- $m_{K p}^{2}=2.3 \mathrm{GeV}$ is corresponding to $\Lambda(1520)$ resonance
- There is a resonance $m_{J p}^{2}=19.5 \mathrm{GeV}$
- To see they are real resonance, full amplitude analysis based on helicity formalism is needed.

We can describe the behavior of the resonance by using a relativistic Breit-Wigner amplitude

$$
\mathcal{A}_{B W} \sim \frac{1}{M_{r}^{2}-s_{a b}-i \Gamma M_{r}} ; \quad \Gamma=\frac{\hbar}{\tau}
$$

Γ is inverse of lifetime τ of resonant state

Environment of LHCb

- 7 TeV center of mass energy beam ($1 \mathrm{fb}^{-1}$ of integrated luminosity)
- 8 TeV center of mass energy beam $\left(2 f b^{-1}\right)$

Calorimeters

Full amplitude analysis

A->BC Scattering amplitude $=$

$$
\mathcal{H}_{\lambda_{B}, \lambda_{C}}^{A \rightarrow B C} D_{\lambda_{A}, \lambda_{B}-\lambda_{C}}^{J_{A}}\left(\phi_{B}, \theta_{A}, 0\right)^{*} R_{A}\left(m_{B C}\right)=\mathcal{H}_{\lambda_{B}, \lambda_{C}}^{A \rightarrow B C} e^{i \lambda_{A} \phi_{B}} d_{\lambda_{A}, \lambda_{B}-\lambda_{C}}^{J_{A}}\left(\theta_{A}\right) R_{A}\left(m_{B C}\right),
$$

$$
\mathcal{H}_{\lambda_{B}, \lambda_{C}}^{\lambda+B C}=\sum_{L} \sum_{S} \sqrt{\frac{2 L+1}{2 \lambda_{A}+1}} B_{L, S}\left(\left.\begin{array}{cc}
J_{B} & J_{C} \tag{2}\\
\lambda_{B} & -\lambda_{C}
\end{array}\right|_{\lambda_{B}-\lambda_{C}} ^{S} .\right) \times\left(\left.\begin{array}{cc|c}
L & S \\
0 & \lambda_{B}-\lambda_{C}
\end{array} \right\rvert\, \begin{array}{c}
J_{A}-\lambda_{C}
\end{array}\right),
$$

$$
J_{A}=L+S, \quad S=J_{B}+J_{C}
$$

- H: decay helicity coupling (free parameter)
- D : wigner D-matrix
- R : additional factor
- Energy released from decay is small, higher L Rest frame of A suppressed.

Full amplitude analysis

$$
\begin{align*}
& \mathcal{M}_{\lambda_{\Lambda_{b}^{0}}^{0, \lambda_{p}, \Delta \lambda_{\mu}}}^{\Lambda^{*}} \equiv \sum_{n} \sum_{\lambda_{A^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{A^{*}}, \lambda_{\psi}}^{\Lambda_{\phi}^{0} \rightarrow \mathcal{N}^{*} \psi \psi} D_{\lambda_{A_{b}^{0}}^{0}, \lambda_{A^{*}}-\lambda_{\psi}}^{\frac{1}{2}}\left(0, \theta_{\Lambda_{b}^{0}}, 0\right)^{*} \\
& \mathcal{H}_{\lambda_{p}, 0}^{\mu_{i}^{*} \rightarrow K_{p}} D_{\lambda_{\Lambda^{*}, \lambda_{p}}}^{J_{\lambda_{p}^{*}}}\left(\phi_{K}, \theta_{A^{*}}, 0\right)^{*} R_{\Lambda_{;}^{*}}\left(m_{K_{p}}\right) D_{\lambda_{\psi}, \Delta \lambda_{\mu}}^{1}\left(\phi_{\mu}, \theta_{\psi}, 0\right)^{*}, \tag{3}
\end{align*}
$$

- Independent parameter : $\theta_{\Lambda_{b}^{0}}, \theta_{\Lambda^{*}}, \theta_{\psi}, \phi_{\mu}, \phi_{K}, m_{K p}$
- Possible coupling : 4 for $J_{\Lambda^{*}}=1 / 2,6$ for $J_{\Lambda^{*}}>1 / 2$

Full amplitude analysis

The mass-dependent $R_{\Lambda_{i}^{*}}\left(m_{K p}\right)$ and $R_{P_{c j}}\left(m_{J / \psi p}\right)$ terms are given by

$$
\begin{gather*}
R_{X}(m)=B_{L_{A_{b}^{0}}^{\prime}}^{\prime}\left(p, p_{0}, d\right)\left(\frac{p}{M_{\Lambda_{1}^{0}}}\right)^{L_{\Lambda_{6}^{0}}^{X}} \mathrm{BW}\left(m \mid M_{0 X}, \Gamma_{0 X}\right) B_{L_{X}}^{\prime}\left(q, q_{0}, d\right)\left(\frac{q}{M_{0 X}}\right)^{L_{X}} . \tag{5}\\
\mathrm{BW}\left(m \mid M_{0 X}, \Gamma_{0 X}\right)=\frac{1}{M_{0 X}{ }^{2}-m^{2}-i M_{0 X} \Gamma(m)}
\end{gather*}
$$

(6)
where

$$
\begin{equation*}
\Gamma(m)=\Gamma_{0 X}\left(\frac{q}{q_{0}}\right)^{2 L_{X}+1} \frac{M_{0 X}}{m} B_{L_{X}}^{\prime}\left(q, q_{0}, d\right)^{2} \tag{7}
\end{equation*}
$$

- Possible coupling : 2 for $J_{P_{c}^{+}}=1 / 2,3$ for $J_{P_{c}^{+}}>1 / 2$

Figure 17: Definition of the decay angles in the P_{c}^{+}decay chain.

- $p^{L} B_{L} \rightarrow$ Blatt-Weisskopf functions

Full amplitude analysis

- Muon and Proton are particles of the final state that should be observed.
- Relating the result of two decay chain is needed.
- Independent parameter: $\Omega=\left(\theta_{\Lambda_{b}^{0}}, \theta_{\Lambda^{*}}, \theta_{\psi}, \phi_{\mu}, \phi_{K}\right), m_{K p}$

Full amplitude analysis

- Use unbinned maximum likelihood fit
- Minimize $-2 \ln \mathcal{L}(\vec{\omega})=-2 \ln \sum_{i} \mathcal{P}\left(m_{K p i}, \Omega_{i} \mid \vec{\omega}\right)$ respect to free parameter set $\vec{\omega}$

$$
\begin{equation*}
\mathcal{P}_{\text {sig }}\left(m_{K p}, \Omega \mid \vec{\omega}\right)=\frac{1}{I(\vec{\omega})}\left|\mathcal{M}\left(m_{K p}, \Omega \mid \vec{\omega}\right)\right|^{2} \Phi\left(m_{K p}\right) \epsilon\left(m_{K p}, \Omega\right) \tag{69}
\end{equation*}
$$

where $\Phi\left(m_{K_{p}}\right)$ is the phase space function equal to $p q$, where p is the momentum of the $K p$ system (i.e. $\left.\Lambda^{*}\right)$ in the Λ_{b}^{0} rest frame, and q is the momentum of K^{-}in the Λ^{*} rest frame, and $I(\vec{\omega})$ is the normalization integral.

- Two independent fitting techniques with different background rejection schemes.
-> Determine ϵ (selection efficiency)

Full amplitude analysis

- With only Λ resonance

State	J^{P}	$M_{0}(\mathrm{MeV})$	$\Gamma_{0}(\mathrm{MeV})$	\# Reduced	\# Extended
$\Lambda(1405)$	$1 / 2^{-}$	$1405.1_{-1.0}^{+1.3}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3 / 2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1 / 2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1 / 2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3 / 2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1 / 2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1 / 2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5 / 2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5 / 2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3 / 2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7 / 2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5 / 2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9 / 2^{+}$	2350	150	0	6
$\Lambda(2585)$	$?$	≈ 2585	200	0	6

Figure 6: Results for (a) $m_{K p}$ and (b) $m_{J / \psi p}$ for the extended Λ^{*} model fit without P_{c}^{+}states. The data are shown as (black) squares with error bars, while the (red) circles show the results of the fit. The error bars on the points showing the fit results are due to simulation statistics.

Full amplitude analysis

- With P_{c}^{+}(4380) with $J^{p}=3 / 2^{+}, P_{c}^{+}(4450)$ with $J^{p}=5 / 2^{-}$
- From null hypothesis, confidence levels are 9σ and 12σ, respectively.
- Low $M=4380 \pm 8 \pm 28 \mathrm{MeV}$ and a width of $205 \pm 18 \pm 86 \mathrm{MeV}$
- High $M=4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV}$ and a width of $39 \pm 5 \pm 19 \mathrm{MeV}$

Figure 3: Fit projections for (a) $m_{K p}$ and (b) $m_{J / \psi p}$ for the reduced Λ^{*} model with two P_{c}^{+}states (see Table 1). The data are shown as solid (black) squares, while the solid (red) points show the results of the fit. The solid (red) histogram shows the background distribution. The (blue) open squares with the shaded histogram represent the $P_{c}(4450)^{+}$state, and the shaded histogram topped with (purple) filled squares represents the $P_{c}(4380)^{+}$state. Each Λ^{*} component is also shown. The error bars on the points showing the fit results are due to simulation statistics.

Figure 7: Various decay angular distributions for the fit with two P_{c}^{+}states. The data are shown as (black) squares, while the (red) circles show the results of the fit. Each fit component is also shown. The angles are defined in the text.

