Positronium simulation

SNU

Bongho Kim

- 1. Basic information of simulation
- 2. Positronium spread by reflection and generation angle distribution
- 3. Detected signal distribution

1. Basic information of simulation

- Purpose of this simulation
- Check Compton background effect to measure correct beam intensity.
- Efficiency change by positronium spread (especially flat target)
- Time distribution of positronium for cavity (required for cross-section measurement) \leftarrow possible main error
- Find the way to measure positroniuim property to reduce systematic error

Simulation geometry

18/03/2019

Simulation

- Geant4.10.3.p01
- Positronium library + Penelope library
- positronium library (positronium generation, decay and reflection)

- positronium generation library (o-Ps (142ns; 30% x 100%(or75%)), p-Ps (125ps;10%), thermal positron (10ps; 50%), Ps at pore (74ns; 30% x 0%(or25%)), Bk positron(10%)

- oPs energy (50meV; Maxwell-Boltzman distribution)
- Ps generation & reflection direction distribution (cosine or isotropic)
- Positron penetration of 30nm film, reflection angle at target.

Positron library

- Positronium deposit energy distribution with back scattering is simulated with Penelope library and the shape is used for positron reflection at the target.
- Theta angle distribution after 30nm window (geant4.10.3p01) is done with Compton scattering (not multiple scattering)

2. Positronium spread

Cosine and isotropic distribution

- Positronium generation and reflection angle distribution
- PRA94, 022716 (2016) insist cosine distribution but not precise.
- Cavity target is more related with reflection distribution and flat target is more related with generation direction distribution

Positronium in the target cavity (cos)

Time	Fraction (in/all)	Total Amount
-100ns	0.987	1779
-50ns	0.992	10132
Ons	0.989	25692
50ns	0.984	33130
100ns	0.970	28226
150ns	0.952	20412
200ns	0.926	14335
250ns	0.893	10135

Positronium in the target cavity (iso)

Time	Fraction (in/all)	Total Amount
-100ns	0.99	1742
-50ns	0.989	10054
Ons	0.985	25479
50ns	0.972	32992
100ns	0.948	28247
150ns	0.902	20376
200ns	0.844	14392
250ns	0.782	10137

Positronium in the flat target (cos)

Time	Fraction (in/all)	Total Amount
-100ns	0.385	8195
-50ns	0.199	45595
Ons	0.138	115416
50ns	0.073	150283
100ns	0.025	128374
150ns	0.006	93511
200ns	0.001	66014
250ns	0.001	46462

Positronium distribution (dead point) (det0)

- Upper histograms show annihilation point of Ops
- Lower histograms show detected annihilation point of Ops with W block (2x4x4cm)

• Efficiency(position) will be updated w & w/o W block

Detector geometry

Positronium distribution (dead point) (det1)

• Efficiency(position) will be updated w & w/o W block

3. Detected signal distribution

Time distribution at PWO detector (det0)

Error should be reduced (error is given with mean depE as 0.5MeV)

 $\sigma_t = 50$ ns; $\sigma_x = 2$ mm; $\sigma_y = 3$ mm ,# =1,000,000 Left) chi2 = 0.37; tau = (1.46 +-0.21)e-7 Right^{*}/^{03/2}Chi2 = 0.13; tau = (1.48 +-0.22)e^{-y}/^{ekly meeting}

Time distribution at PWO detector (det0 +W)

Error should be reduced (error is given with mean depE as 0.5MeV)

 $\sigma_{t} = 50 \text{ns}; \sigma_{x} = 2 \text{mm}; \sigma_{y} = 3 \text{mm}, \# = 20,000,000$ Left) chi2 = 0.39; tau = (1.98 +-0.13)e-7 Right²)^{03/2}Chi2 = 0.39; tau = (2.03 +-0.11)e^{-100}

Time distribution at PWO detector (det1 +W)

Showing with reduced bin number(1/4) ,# =20,000,000 Left) chi2 = 0.26; tau = (1.67 +-0.12)e-7 Right) chi2 = 0.26; tau = (1.85 +-0.12)e-7

Det1 signal

1.2

1.4

1.6

1.8

2.2

2.4

hlr_iso

hlr iso

- Upper black : left + right
- Upper blue : up + down
- Lower plots : residual after scaling

- Tau_lr = 1.63+-0.13e-7, tau_ud = 2.35+0.55e-7
- Tau_lr_iso = 1.63+-0.10e-7, tau_ud_iso = 2.91+-0.53e-7

backup

Time distribution at PWO detector (det0 +W)

Error should be reduced (error is given with mean depE as 0.5MeV)

 $\sigma_t = 15 \text{ns}; \sigma_x = 2 \text{mm}; \sigma_y = 3 \text{mm}$ Left) chi2 = 0.28; tau = (1.96 +-0.08)e-7 Right^(a)^{03/2}^(b)¹² = 0.53; tau = (2.29 +-0.08)e^{-y}²^(k)^(meeting)

Time distribution at PWO detector (det1 +W)

 $\sigma_t = 15 \text{ns}; \sigma_x = 2 \text{mm}; \sigma_y = 3 \text{mm}$ Showing with reduced bin number(1/4) Left) chi2 = 0.20; tau = (1.57 +-0.07)e-7 Right) chi2 = 0.29; tau = (1.78 +-0.07)e-7 weekly meeting