### FADC noise

Data taking minimum threshold  $\approx$  3ch th=1, 2[ch] : noise detected

The conversion factor 1 [ch]  $\approx 1.2 \times 10^{-2}$  [MeV]



The light efficiency 100 photoelectrons / MeV

 $\therefore$  3[ch] ~ 3.6 × 10<sup>-2</sup>[MeV] ~ 3.6 photoelectrons

# Review on Observation of the 1S-2S transition in trapped antihydrogen

Ahmadi, M. et al., Nature(2016)

Ahram lee

- 1. Motivation
- 2. ALPHA experiment
- 3. Results
- 4. Conclusion

### 1. Motivation

#### The spectrum of the hydrogen(H) atom

has played a central part in fundamental physics.

Fraunhofer, Absorption lines in the solar spectrum Balmer, Lyman et al., Transition lines Rydberg, The empirical description of allowed wavelengths Bohr, The quantum model



### **CPT Theorem**

charge conjugation – parity reversal – time reversal symmetry a cornerstone of the Standard Model predict that H and anti-hydrogen( $\overline{H}$ ) have the same spectrum

### A comparison H and $\overline{H}$ frequencies can be an extremely sensitive test of CPT symmetry



### Since low energy $\overline{H}$ synthesized by ATHENA(2002), ATRAP – ALPHA – ASACUSA collaborations repeated this feat.

### In 2010, ALPHA team showed that $\overline{H}$ could be held for up to 1000s.

Tests of CPT symmetry Gravitational stuides

### How ALPHA works



## 2. ALPHA experiment

### **ALPHA-2** apparatus

the multipolar, superconducting trap as a second-generation device for  $\overline{H}$ 



Mirror coils (on/off) Axial confinement well Octupole magnet (on/off) Transverse confinement External solenoid (on) Elimination of charged particles

can trap atoms which have a kinetic energy less than about 0.5K, within a cylindrical volume of 44mm diameter and 280mm length.

# The 1S-2S transition of hydrogen $f \sim 2.5 \times 10^{15} Hz$

long lifetime of metastable 2S state ~ 1/8sec narrow natural linewidth ~ 1.3Hz good for experiment BUT, it's forbidden

note : Doppler-free two-photon transition (Hänsch, 1977)



With co- and counter-propagating beams, eliminates first-order Doppler broadening reduces the line width to 1kHz

The fractional second-order Doppler shift  $2 \times 10^{-11}$  (for hydrogen)

### The 1S-2S transition of hydrogen

< Energy diagram >



a, b : untrappable high-field seeking states d, c : trappable low-field seeking states

> $f_{d-d} = 2\ 466\ 061\ 103\ 064(2)\ kHz$  $f_{c-c} = 2\ 466\ 061\ 707\ 104(2)\ kHz$

< Simplified level scheme >



An atom in the 2S state can experience

- a two-photon decay to same hyperfine state
- $\rightarrow$  trappable
- 2) a one-photon decay via 2P state to same spin or spin-flip
- → trappable → untrappable

3) ionization

by a single additional photon  $\rightarrow$  untrappable

1)

#### **Experimental process**

producing  $\overline{H}$  in the atom trap pulsing axial electric fields



300s exposure of both the c-c & d-d transition, by illuminating the laser 1) On resonance : an expected resonance frequency ( $\delta = 0$ ) 2) Off resonance : detuning 200kHz below ( $\delta = -200kHz$ ) 3) No laser : without laser radiation

11 sets of three types of trial

ramping down the fields

to release

### **Experimental process**

producing  $\overline{H}$  in the atom trap ramping down the fields pulsing axial electric fields to release 300s 300s d-d transition c-c transition -100 0 100 Axial Position (mm) The vertex detector **Reconstruction efficiency Reconstruction efficiency** note : Multivariate analysis algorithm  $0.376 \pm 0.002$  $0.688 \pm 0.002$ used for cosmic ray rejection Cosmic background rate Cosmic background rate  $0.0043 \pm 0.0003 s^{-1}$  $0.042 \pm 0.001 s^{-1}$ 

### **Simulation setup**

Calculate the two-photon excitation probability as a function of laser detuning( $\delta$ ) during a 300s exposure of both the c-c & d-d transitions

assuming 1W of circulating laser power in cavity

transit time broadening, AC Stark shift, Zeeman effect

#### **Simulation results**

- 1) asymmetric due to residual Zeeman effect
- 2) compared to off resonance,
  - the fraction of  $\overline{H}$  removed by on-reson. Laser

0.47 (at 300s)



#### **Experimental results**



#### Table1. Detected events during 1.5s ramp down

| Туре          | Number of detected events | Background | Uncertainty |
|---------------|---------------------------|------------|-------------|
| Off resonance | 159                       | 0.7        | 13          |
| On resonance  | 67                        | 0.7        | 8.2         |
| No laser      | 142                       | 0.7        | 12          |

 $\rightarrow$  survived(trapped) atoms

- Off resonance ~ no laser
  no laser-related side effects leading to H loss
- 2) On ~ Off resonance

 $159 - 67 = 92 \pm 15 counts$ 

- $\therefore \frac{92}{0.688} \approx 134 \text{ atoms removed by On-res. laser}$
- $\therefore \frac{92}{159} \approx (58 \pm 6)\% \text{ of trapped atoms removed}$
- → consistent with hydrogenic rate estimates (simulation results)

#### **Experimental results**



#### Table 2 | Detected events during the 300 s hold times for each transition, and their sum

| Туре             | Number of detected events | Expected Background | Uncertainty |
|------------------|---------------------------|---------------------|-------------|
| d-d off res.     | 15                        | 14.2                | 3.9         |
| d-d on res.      | 39                        | 14.2                | 6.2         |
| No laser         | 22                        | 14.2                | 4.7         |
| c-c off res.     | 12                        | 14.2                | 3.5         |
| c-c on res.      | 40                        | 14.2                | 6.3         |
| No laser         | В                         | 14.2                | 2.8         |
| d-d+c-c off res. | 27                        | 28.4                | 5.2         |
| d-d+c-c on res.  | 79                        | 28.4                | 8.9         |
| No laser (sum)   | 30                        | 28.4                | 5.5         |

 $\rightarrow$  lost(untrapped) atoms

- Comparing with background
  Off resonance & No laser ~ background(28)
  Only On resonance type is different(79)
- 2) On ~ Off resonance  $79 - 27 = 52 \pm 10 \ counts$  $\therefore \frac{52}{0.376} \approx 138 \ atoms \ removed \ by \ On-res. \ Laser$

 $\rightarrow$  consistent with the result before(134)

Assuming no exotic asymmetries in the spectrum, 400kHz resolution as a test of CPT symmetry !

#### Limitations

A stronger statement must await a detailed measurement of transition line shape.

There are the uncertainties which can become important for smaller detunings.

the long-term average laser frequency ~  $8 \times 10^{-13}$  (frequency comb) the laser linewidth at two-photon frequency ~ 10kHzthe trap's minimum magnetic field strength ~  $28.46 \pm 0.01 GHz$ the frequency uncertainty for c-c ~  $\pm 6400Hz$  (resulting from field uncertainty) for d-d ~  $\pm 350Hz$ 

 $\rightarrow$  A straightforward extension of the current technique should provide a measurement of the line shape in the near future

### 4. Conclusion

- As a first laser-spectroscopic measurement on antimatter, ALPHA observed 1S-2S transition in magnetically trapped atoms of antihydrogen in the ALPHA-2 apparatus at CERN.
- ALPHA determined the frequency of transition, driven by two photons from a laser at 243nm, is consistent with that expected for H in the same environment at a relative precision of about 2 × 10<sup>-10</sup>. The sensitivity is ~ 2 × 10<sup>-18</sup>GeV, which is approaching the absolute precision of the CPT test in the neutral kaon system of ~ 5 × 10<sup>-19</sup>GeV.
- Improved trapping rate bodes well for many other future antihydrogen experiments, such as microwave hyperfine transitions, Lyman-alpha light and gravitational studies.
- It can potentially have a significant sensitivity to the internal structure of the antiproton, at a level relevant to the current puzzle in the proton charge radius.