July 13, 2016

# A Search for Dark Matter

Kim, Kyungwon

 Galactic scales: Rotation curves of galaxies



Galaxy cluster scales:
 Bullet cluster



Cosmological: structure formation

These observations can be explained by dark matter.

July 13, 2016

A Search for Dark Matter, Kim, Kyungwon

#### Dark Matter is,

- Stable
- Non relativistic, structure formation (cold dark matter)
- Massive, Gravitational interaction
- Neutral, rarely interacting (dark)
- Non-baryonic

Cosmic Microwave Background (CMB) and Big Bang Nucleosynthesis (BBN) find that the average mass/energy content of the universe is mostly dark.



## Supersymmetry

New fundamental symmetry Q|fermion> = |boson>, Q|boson> = |fermion> Standard Model (SM) particles gets Superpartner (differ in spin by ½ with SM particle) R parity

$$R = (-1)^{3(B-L)+2S}$$

B: baryon #, L: lepton #, S: spin



Lightest Supersymmetric Particle (LSP) in SUSY is strong candidate for WIMP

 $\rightarrow$  Neutralino: mixed state of neutral spin  $\frac{1}{2}$  superpartners

 $\widetilde{\mathbf{B}}\,,\widetilde{W},\widetilde{H}_{u},\widetilde{H}_{d}\,\,\rightarrow\,\,\widetilde{\chi}_{1},\widetilde{\chi}_{2},\widetilde{\chi}_{3},\widetilde{\chi}_{4}$ 

- The right relic density of dark matter is naturally obtained.
- WIMP hypothesis can be experimentally testable.

### Searches for WIMP



#### Indirect Search

- Detect secondary particle (gamma, neutrino, positron...) produced by annihilation of WIMPs

- Space, ground, underground experiments
- Neutrinos from the center of Sun, Earth
  - → Neutrino telescopes : SuperK, AMANDA,...
- Gammas from dark halo
  - $\rightarrow$  EGERET, GLAST
- Positrons/Antiprotons from dark halo
  → HEAT, AMS, ...

#### **Direct Detection of WIMP**

- Elastic scattering of a WIMP off a nucleus:
- Deposit small amount of recoil energy
- Can occur via spin-dependent/independent channels
- Need to distinguish this event from the number of backgrounds events



Observed recoil energy  $E_R \sim 30$  keV (m<sub> $\chi$ </sub> = 100 GeV)

#### **Event Rates**

Interaction rate (counts/keV/kg/day)

$$\frac{dR}{dE_R} = \frac{\sigma_0}{m_{\chi}} \frac{F^2(E_R)}{m_r^2} \frac{\rho_0 T(E_R)}{v_0 \sqrt{\pi}}$$

$$m_{\chi}$$
: WIMP mass ,  $m_r = \frac{m_{\chi}m_N}{m_{\chi} + m_N}$   
 $F^2(E_R)$ : form factor  
 $\rho_0$ : local density (0.3 GeV/c<sup>2</sup>/cm<sup>3</sup>)  
 $T(E_R)$ : inetgral over local WIMP velocity distribution

 $v_0$ : local velocity (220 km/s)

• Spin independent interaction:

 $\sigma_0 \cong \frac{4m_r^2}{\pi} f A^2$  ~ Atomic mass (heavy nuclei)

f: coupling constant, A: atomic mass number

• Spin dependent interaction:

$$\sigma_{0} = \frac{32(J+1)}{\pi J} \begin{array}{c} G_{F}^{2}m_{r}^{2}(a_{p} < S_{p} > +a_{n} < S_{n} >)^{2} \\ \swarrow \\ Fermi \text{ constant } coupling \text{ constant } nuclear \text{ spin} \end{array}$$

spin-less nuclides, SD = 0



#### WIMP scattering event rate is low,

 $\sigma$ =2×10<sup>-4</sup> pb, m<sub>WIMP</sub>=10 GeV, event rate < 1 counts/day/kg

Backgrounds are very large,

Gamma rays, beta decays and Neutrons

#### Need low backgrounds

- External, natural radioactive backgrounds
  - underground laboratory, active shield
- Internal radioactive backgrounds low background crystal
- Iow backgrounds, good signal discrimination, Iow energy threshold, large exposure (mass × time)

#### **Detection Strategies**



## **Detection Principles**

#### Signal

 Nuclear recoils (NR);
 WIMP is expected to interact with the nucleus and produce nuclear recoils.

Backgrounds

Electron recoils (ER);
 Most backgrounds(γ)
 produce electron recoils.



## Detection Strategies – Liquid noble gas detector

#### Double phase detector (scintillation – ionization)

Prompt light (S1) after interaction in active volume;

Charge is drifted, extracted into the gas phase and detected as proportional light (S2)



## Detection Strategies – Cryogenic solid state detector

#### Phonon (heat) detector



Advantage of phonon readout

- Direct measurement of nuclear recoil energy (no QF)
- ~100% of recoil energy → low energy thresholds → better sensitivity
- Good energy resolution → better determination of WIMP recoil spectrum



Scintillation (light) detector:

Measure photons generated by the energy deposition

Different response to nuclear recoils(NR) and

electron recoils(ER)

Velocity: NR < ER

- → Stopping power: NR > ER
- $\rightarrow$  Ionization quenching: NR > ER
- $\rightarrow$  slow component: NR < ER
- → Pulse Shape Discrimination (PSD) is possible.

## Annual Modulation Signature

The velocity of the Earth varies as the Earth moves around the Sun

 $\rightarrow$  the velocity modulation ~7%

$$v_E(t) = v_0 \left( 1.05 + 0.07 \cos \frac{2\pi (t - t_0)}{1 \ yr} \right)$$
  
t = days  
t\_0 = 152 d (June 2)  
1 yr = 365 days

 $\rightarrow$  ~ 3% modulation in rate

$$\frac{d}{dv_E} \left(\frac{R}{R_0}\right) \sim \frac{1}{2vE} \frac{R}{R_0}$$





## DAMA/LIBRA Experiment

- Operating at LNGS in Italy
- 5 x 5 array, 9.7 kg of NaI(Tl)





• Annual modulation only at the low energies



Modulating signal w/ 9.3 σ level



#### WIMP Search Status



#### WIMP Search Status



### WIMP Search Status



## **KIMS Experiment**

#### @ Yangyang underground laboratory, Minimum depth: 700 m



#### Shield structure





## **KIMS-CsI** Experiment

#### KIMS-CsI setup



- CsI(Tl)
- 4x3 crystals (104.4 kg)
- Background : 2~3 counts/kg/day/keV (dru)
- Light yield: 5~7 photoelectrons/keV (crystal: ~60 photons/keV)
- Decay constant: 1000 ns
- 1 year data (2009-2010): PSD study
- 3 year data (2009-2012): ANM study

#### KIMS-CsI detector



CsI(Tl) Crystal 8x8x30 cm<sup>3</sup> (8.7 kg) 3" PMT (9269QA, Electron tube)



Peak at ~ 520 nm

## **KIMS-Nal Experiment**

#### KIMS-NaI setup



#### **KIMS-NaI** detector

#### NaI(TI)

- different mass and dimensions
- Light yield: ~15 photoelectrons/keV (crystal: ~40 photons/keV)
- Decay constant: 250 ns
- 2014~ current



## **Pulse Shape Discrimination**

Different response to nuclear recoils(NR) and electron recoils(ER)

Velocity: NR < ER

- $\rightarrow$  Stopping power: NR > ER
- $\rightarrow$  Ionization quenching: NR > ER
- $\rightarrow$  slow component: NR < ER
- → Pulse Shape Discrimination (PSD) is possible.

PSD parameter:  $\ln(Mean Time)$  $Mean Time = \frac{\sum A_i \times t_i}{\sum A_i}$ 

 $A_i$ : charge of ith signal cluster  $t_i$ : time of ith signal cluster



## PSD Analysis – Neutron calibration (NaI(Tl))



- Nuclear recoil: A 300mCi Am/Be neutron source
- Electron recoil: <sup>137</sup>Cs gamma ray source
- Small test crystal (same ingot with NaI-002)



## PSD Analysis – The power of discrimination



#### Good pulse shape discrimination capabilities

A Search for Dark Matter, Kim, Kyungwon

## Nuclear Recoil Rate Extraction (NaI(TI))

Data fitted with In(MT) of NR & ER 2~3 keV 3~4 keV Fitting parameter:  $N_{ER'}$   $N_{NR}$ N\_ER = 4216 +/- 133 N\_ER = 4790 +/- 113 N\_NR = 302 +/- 118 N\_NR = 84 +/- 90 10<sup>3</sup> 10<sup>3</sup> **Black: data** 10<sup>2</sup> 10<sup>2</sup> Blue solid: fitting 10 10 Green dashed: ER Red dashed: NR 10 10 10<sup>-2</sup> II. سلا<sup>2</sup> 10<sup>-2</sup> 10 -0.5-1.5-1 -1.5 -0.5  $log(MT) (log(\mu s))$ log(MT) (log(µs)) 4~5 keV 5~6 keV N ER = 3959 +/- 49 N ER = 3190 +/- 183 N\_NR = 8 +/- 53 N NR = -40 +/- 44 10<sup>3</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup> 10 10 10 10 سليلا<sup>\_2</sup> 10\_\_\_\_\_\_ 10<sup>-2</sup> -1.5 -1.5 -1 -0.5-0.5 \_2 -2 log(MT) (log(µs)) log(MT) (log(µs))

A Search for Dark Matter, Kim, Kyungwon

### WIMP Mass – Cross Section (NaI(TI))



WIMP-nucleon cross section limit was estimated by fitting NR rate spectrum to WIMP recoil spectrum.

#### WIMP Mass – Cross Section



## Backup Slides

## PSD analysis – Neutron Calibration

#### Nuclear recoil (NR) data:

- Neutron setup (SNU)
- Am/Be neutron source
- small test crystal 2 x 2 x 1.5 cm<sup>3</sup>
  same ingot with NaI002
  NaI002: 4.2"(D) x 11"(L)

#### **Electron recoil (ER) data:**

- NaI002, multiple hit event (Y2L)
- Reference data:
- <sup>137</sup>Cs source (small crystal-neutron setup)



## PSD analysis – Underground data



- NaI001 (8.26 kg), 80.77 days data
- Electron recoil: Multiple hit events



PMT noise event rate ~ a few hundred events/day



## PMT noise rejection



June 15, 2016

## PMT noise rejection



## KIMS NaI detector – Photo Multiplier Tube (PMT)

| Property                    | R12669                          | 9269QA                  |
|-----------------------------|---------------------------------|-------------------------|
| Manufacturer                | Hamamatsu                       | Electron tubes          |
| Window material             | Brosocilicate                   | Quartz                  |
| Body material               | Brosocilicate                   | Quartz+Borosilic<br>ate |
| Photocathode<br>material    | SBA                             | RbCs                    |
| Effective Dia. (mm)         | 70                              | 76                      |
| Dark Current (nA,<br>30min) | 6                               | 4                       |
| U (mBq/PMT)                 | 25±5                            | 83                      |
| Th(mBq/PMT)                 | 12±5                            | 48                      |
| K (mBq/PMT)                 | 58±5                            | 1866                    |
| Gain (HV)                   | 1 x 10 <sup>6</sup>             | 1.8x10 <sup>6</sup>     |
| Remarks                     | Same PMT used in<br>DAMA, ANAIS | Used<br>in KIMS-CsI     |

#### Quantum Efficiency



June 15, 2016

## KIMS NaI detector – NaI(TI) crystal



| Property                     | NaI(Tl) |
|------------------------------|---------|
| Density (g/cm <sup>3</sup> ) | 3.67    |
| Decay constant (ns)          | ~ 250   |
| Peak emission (nm)           | 415     |
| Light yield (photon/MeV)     | ~ 40000 |

NaI002 (Dec. 2013)

- Alpha Spectra in US
- 4.2"(D) X 11"(L), 9.2 kg
- Encapsulated in OFH Cu case
- Aluminized Mylar window

#### good

- High light yield
- Easily growing in large size crystals
- Enable spin-dependent interaction bad
- High hygroscopic
- Low quenching factor
- No particle discrimination(?)

| Radio nuclei                           | NaI002             | ANAIS            | DAMA     |
|----------------------------------------|--------------------|------------------|----------|
| <sup>238</sup> U ( <sup>214</sup> Bi)  | <0.001 mBq/kg      | 0.01 mBq/kg      | 1-10 ppt |
| <sup>228</sup> Th ( <sup>216</sup> Po) | 0.002±0.001 mBq/kg | 0.003 mBq/kg     | 1-10 ppt |
| <sup>40</sup> K                        | 49.3 ppb           | 41 ppb           | < 20 ppb |
| <sup>210</sup> Pb                      | 1.76±0.01 mBq/kg   | 3.28±0.02 mBq/kg |          |

#### VI. Expected WIMP recoil energy spectrum

 $E_r \rightarrow dR/dE$  \* Form factor (SI) \* quenching factor

 $d\mathbf{R}/d\mathbf{E}: \quad \frac{dR(v_E, v_{esc})}{dE_R} = \frac{k_0}{k_1} \left[ \frac{dR(v_E, \infty)}{dE_R} - \frac{R_0}{E_0 r} e^{-v_{esc}^2/v_0^2} \right].$   $\frac{dR(v_E, \infty)}{dE_R} = c_1 \frac{R_0}{E_0 r} e^{-c_2 E_R/E_0 r}, \quad k = k_1 = k_0 \left[ \text{erf} \left( \frac{v_{esc}}{v_0} \right) - \frac{2}{\pi^{1/2}} \frac{v_{esc}}{v_0} e^{-v_{esc}^2/v_0^2} \right]; \quad \frac{c_1}{c_2} = \frac{R(v_E, \infty)}{R_0}.$   $R_0 = \frac{503}{M_D M_T} \left( \frac{\sigma_0}{1 \text{ pb}} \right) \left( \frac{\rho_D}{0.4 \text{ GeV} c^{-2} \text{ cm}^{-3}} \right) \left( \frac{v_0}{230 \text{ km s}^{-1}} \right) \text{ tru} \qquad E_0 = \frac{1}{2} M_D v_0^2 = (v_0^2/v^2) E$   $v_0 = 220 \text{ km/s}, \quad v_{esc} = 544 \text{ km/s}, \quad \rho_D = 0.3 \text{ GeV/c}^2/\text{cm}^3$   $M_D: \text{ WIMP mass}, \quad M_T: \text{ target material mass}$ Form Factor:  $F(qr_n) = 3 \frac{j_1(qr_n)}{qr_n} \times e^{-(qs)^2/2},$   $r_{rms}^2 = \frac{3}{5} r_n^2 + 3s^2, \quad r_n = a_n A^{1/3} + b_n \qquad q(\text{MeV}c^{-1}) = [2 \times 0.932(\text{GeV}c^{-2})AE_R(\text{keV})]^{1/2}$ 

Quenching Factor: Na-0.3, I-0.09

#### $E_r \rightarrow energy resolution$

$$\frac{\sigma}{E} = \frac{p0}{\sqrt{E}} + p1$$
 From <sup>40</sup>K, <sup>125</sup>I, <sup>241</sup>Am: (3.07, 30.77, 59.54) keV  
p0 = 0.3122, p1 = 0.006

June 15, 2016 A Search for Dark Matter with NaI(TI) Crystal of the KIMS-NaI, Kim, Kyungwon