Edge Hill Problem

2020.01.03

Hobin Lee, Seungmok Lee

Motivation

.Running one plastic scintillator, lying down with threshold 200 ADCs, shows unnatural event rates at its edge.

Motivation (cont'd)

.There is 'something' in the pulse height distribution near the PMT.

Pulse Height [ADC]

Height in $-0.800 \mathrm{~m} \sim-0.775 \mathrm{~m}$ Right

Edge Hill Problem

New Feature

.It is natural that the PMT near event point having larger signal than the signal on further PMT.

- Due to attenuation
- This example event is
- \quad Position: -77 cm (center is 0 cm .)
- Left Height: 960 ADC
- Right Height: 372 ADC

Signal on Right PMT

New Feature (cont'd)

.However, there were many 'unnatural' events.

- This example event is
- Position: -76 cm
- Left Height: 246 ADC
- Right Height: 226 ADC

Signal on Right PMT

New Feature (cont'd)

.However, there were many 'unnatural' events.

- This example event is
- Position: -75 cm
- Left Height: 216 ADC
- Right Height: 374 ADC
- Further PMT gets stronger signal!

Signal on Right PMT

Properties of New Feature

.This phenomenon happens

- Near a PMT. (rich in 5 cm , existent until 10 cm from PMT)
- With relatively high secondary peak (reflection signal).

Properties of New Feature (cont'd)

- Secondary peak (reflection signal) is relatively high.

Signal on Right PMT

Properties of New Feature (cont'd)

- Secondary peak (reflection signal) is relatively high.

2nd Height vs Main Height

Properties of New Feature (cont'd)

.Attenuation behavior is good except near edge.

Properties of New Feature (cont'd)

.Attenuation behavior is good except near edge.

Properties of New Feature (cont'd)

.Attenuation behavior is good except near edge.

New Feature in CERN 12 Bars

.Considering only 12 bars hits event
.Track fitted.
.Cut off chi/NDF > 1.5
.Position has determined properly..

.Also exist.

New Feature in CERN 12 Bars

.Also exist.

.Bars except $1^{\text {st }}$ and last bars have less edge hit events.

So, such behavior rates are small.
$-1^{\text {st }}$ bar.

New Feature in CERN 12 Bars

.To see energy dep. .Left integ. vs right integ.

Edge Hill Problem

Scenario

.This new phenomenon can not be explained by new source.

- ex. new particle, fluorescence, Cherenkov radiation, etc.
.There may be some geometrical complexity in the vicinity of PMT.

Geometrical Effect

.The most possible scenario is muon passing the side part of scintillator.

Geometrical Effect (cont'd)

.Normal events has about 2π solid angle to each PMTs.

Geometrical Effect (cont'd)

.Sided events can have asymmetric solid angle to each PMTs.
.Perhaps this kind of events is the reason of hill at the edge.

Geom. In CERN

.To see angle dep.
.Angle vs log(intL/intR)

GEANT4 Simulation

.GEANT4 simulation considering geometrical effect shows a little aspect of 'new feature'.

- Not that satisfying yet.

Event Rate

.About 5,000 events are in the hill.
_ $\sim 0.5 \%$ of total events
.The order is consistent with Byeongyoon's calculation.

- c.f. Byeongyoon's presentation
- Would it be just a coincidence?
- Not sure yet.

Event Rate

 .Just cut off along a line .Cut is applied to integ, but trigger is detmined by heights.Edge hill has reduced to reasonable level.

Edge Hill Problem

How to Confirm?

.Detecting muon coming to one side.

- More properties will be obtained from this experiment.
.Seungmok is studying GEANT4.

What Should We Do?

.Whatever the origin of edge hill is, it is clear that the signal near a PMT shows bad behavior.
.We should cut the events in the vicinity of PMT.

Cut How Much?

.5 cm cut does improve the result.

- 10 cm cut is also considerable.
.lt may be able to optimize.
.But its optimization variables are ambiguous.

Cut How Much? (cont'd)

.No cut
.Angle vs
t_i-t_11
($\mathrm{i}=0,1,2, \sim$)

Cut How Much? (cont'd)

.Cut on $11^{\text {th }}$ bar .Cut 5 cm

Cut How Much? (cont'd)

.Cut on others .In the real exp,
 every bar has behavior similar

 to $1^{\text {st }}$ and last bars.

