Lab Meeting

Study of $B \rightarrow p\overline{p}K$ Decays $B^+ \rightarrow (c\overline{c})K^+ \rightarrow p\overline{p}K^+$ $B^0 \rightarrow (c\overline{c})K^0_S \rightarrow p\overline{p}K^0_S$

July 13, 2016 Seoul National University Jaekeum Lee įklee@hep1.snu.ac.kr

Charmonium(-like) states in $B \to p \bar{p} K$

Motivation

- measure the branching fractions of the decays B⁺ → pp̄K⁺ and B⁰ → pp̄K_S⁰ for intermediate charmonium(-like) states such as η_c(2S), ψ(3770), X(3872) and χ_{c0}(2P) (was X(3915)).
- will be of interest for future experiment PANDA which plans to study charmonium and charmed particle production in pp annihilations.

Analysis features

- based on blind analysis (3.5 GeV/c² 4.0 GeV/c²)
- continuum suppression using modified Fox-Wolfram moments
- two dimensional unbinned likelihood fit for signal yield extraction (past work)
- three dimensional unbinned likelihood fit for signal yield extraction (ongoing work)
- test mode $J/\psi \rightarrow pp$, and $\eta_c \rightarrow pp$ in $B^{\pm} \rightarrow ppK^{\pm}$, $B^0 \rightarrow ppK_S^0$

II. Event Selection

Charged Track Selection

Charged Track Selection Criteria

Selection	modes			
Criterion	ppK⁺	ppK_s^{0}		
dr of p+	< 0.3 cm	< 0.3 cm		
dz of p+	< 3.0 cm	< 3.0 cm		
dr of p+	< 0.3 cm	< 0.3 cm		
dz of p+	< 3.0 cm	< 3.0 cm		
PID(p+ K)	> 0.6	> 0.6		
PID(p+ π)	> 0.6	> 0.6		
PID(p- K)	> 0.6	> 0.6		
PID(p- π)	> 0.6	> 0.6		
dr of K	< 0.3 cm			
dz of K	< 3.0 cm			
PID(K π)	> 0.6			

II. Event Selection

K_S^0 Selection / Reconstruction

• $K_{\rm S}^{0}$ Reconstruction

- reconstructed from $\pi^+\pi^-$ (stored in MDST_Vee2 table)
- Mass constraint & Vertex Finding Simultaneously (vertex err == 0)
- $K_{\rm S}^0$ Selection
 - goodKs condition : goodKs > 0
 - invariant mass cut : 0.482 GeV/c² < m($\pi^{+}\pi^{-}$) < 0.514 GeV/c² (±4 σ) (m(K⁰_s) ~ 0.498 GeV/c², σ ~ 0.004 GeV/c², 4 σ ~ 0.016 GeV/c²)

Reconstructed K_s⁰ mass distributions w/ and w/o goodKs cut

K_s⁰: Continuum MC

B reconstruction

B reconstruction

- B^+ : reconstructed by p, pbar and K^+
- B^0 : reconstructed by p, pbar and K_s^0
- Mass constraint & Vertex Finding Simultaneously (vertex err == 0)

The Candidate and Signal Region

determined from signal MC

	$M_{\rm bc}$ (GeV/c ²)	ΔE (GeV)
Candidate Region	5.20 < M _{bc} < 5.30	-0.10 < ΔE < 0.30
Signal Region	5.27 < M _{bc} < 5.29	-0.05 < AE < 0.05

• M_{bc} distribution with $|\Delta E| < 0.05$ GeV and ΔE distribution with 5.27 GeV/c² $< M_{bc} < 5.29$ GeV/c²

Data

	Exp. #	N (BB)			
Data Sets					
HadronB(J) on-resonance	Exp. 7 to Exp. 65	772 x 10 ⁶			
Signal Samples: Signal MC					
$B^+ \rightarrow ppbarK^+$	Exp. 7 to Exp. 65	455,233			
$B^0 \rightarrow ppbarK_s^0$	Exp. 7 to Exp. 65	102,620			
$B^+ \rightarrow J/\psi K^+ \rightarrow ppbarK^+$	Exp. 7 to Exp. 65	0.1M			
$B^+ \rightarrow \eta_c K^+ \rightarrow ppbarK^+$	Exp. 7 to Exp. 65	0.1M			
$B^+ \rightarrow J/\psi K^0_s \rightarrow ppbar K^0_s$	Exp. 7 to Exp. 65	0.1M			
$B^+ \rightarrow \eta_c K^0_s \rightarrow ppbar K^0_s$	Exp. 7 to Exp. 65	0.1M			
Background Samples: Generic continuum MC					
on-resonance charm MC	Exp. 7 to Exp. 65	1 stream			
on-resonance uds MC	Exp. 7 to Exp. 65	1 stream			

Continuum Background

Continuum events

- $e^+e^- \rightarrow qq$ where q = u, d, s, and c
- the dominant background for charmless B decays
- about a three times larger cross section than $e^+e^- \rightarrow Y(4S) \rightarrow BB$ events
- "back-to-back" jet-like while the signal BB events are "spherical"

 $e^+e^- \rightarrow Y(4S) \rightarrow BB$ (Spherical)

Event shape

Continuum Suppression

- Likelihood method based on Event Shape Variables: KSFW and cosθ_B
 - KSFW (Kakuno Super Fox Wolfram) moments

event-shape variable calculated by Fisher method using angles of momenta, etc.

cosθ_B

the cosine of the angle between the B flight direction and the beam direction in Y(4S) rest frame

Data samples

- Signal sample $B^+ \rightarrow ppK^+ / B^+ \rightarrow ppK_S^0$ signal MC
- Background sample on-resonance continuum (uds + charm) MC

KSFW moments distributions

Likelihood Ratio

Optimization of LR Cut

Likelihood Ratio

Figure-Of-Merit Study

- Estimation of S / B
 - s calculated from the signal MC using PDG branching fractions with 772 x 10⁶ BB pairs
 - B calculated from on-resonance continuum MC data (uds + charm) normalized to real data

Optimization of LR Cut

Figure-Of-Merit Plots as a function of likelihood ratio

Optimization of LR Cut (NEW)

Figure-Of-Merit Plots as a function of likelihood ratio of control samples

Signal Yield Extraction

- Signal Yield Extraction 3-Dimensional Unbinned Likelihood Fit on $M_{bc} \Delta E M_{pp}$ plane
- Test modes $B^+ \rightarrow J/\psi K^+ \rightarrow ppK^+$
 - $B^{+} \rightarrow \eta_{c}K^{+} \rightarrow ppK^{+}$ $B^{0} \rightarrow J/\psi K^{0}_{s} \rightarrow ppK^{0}_{s}$ $B^{0} \rightarrow \eta_{c}K^{0}_{s} \rightarrow ppK^{0}_{s}$

Determination of Signal and Background PDFs

PDF	M _{bc}	ΔE	M _{pp}
Signal * resonant	Gaussian	double Gaussian	Gaussian - J/ψ Voigtian - η _c
Background 1 combinatoric	Argus	1 st order polynomial	const.
Background 2 ** non resonant "peaking bkg"	Gaussian	double Gaussian	1 st order polynomial

*
$$B^+ \rightarrow (cc) K^+ \rightarrow ppK^+$$

****** $B^+ \rightarrow ppK^+$

(parameters floated)

$B^+ \rightarrow J/\psi(1S)K^+ \rightarrow p\bar{p}K^+$

$B^+ \rightarrow \eta_c(1S)K^+ \rightarrow p\bar{p}K^+$

projections onto signal region 17

$B^0 \rightarrow J/\psi(1S)K^0_S \rightarrow p\bar{p}K^0_S$

$B^0 \rightarrow \eta_c(1S)K^0_S \rightarrow p\bar{p}K^0_S$

Branching Fractions

Calculation of Branching Fractions

$$\mathcal{B}(B \to (c\bar{c})K) \times \mathcal{B}((c\bar{c}) \to p\bar{p}) = \frac{N_{measured}}{N_{B\bar{B}}} \times \frac{1}{\varepsilon_{total}}$$

$$\varepsilon_{total} = \varepsilon_{MC} \times f_{KID/K0S}^* \times f_{protonPID} \times f_{anti-protonPID}$$

Efficiency Correction Factors

Modes	MC Eff.	KID / KOS	proton PID	anti-proton PID	Total Eff.
$B^{+} \rightarrow J/\psi K^{+} \rightarrow ppK^{+}$	0.3489	0.9916	0.9860	0.9760	0.3329
$B^{+} \rightarrow \eta_{c}K^{+} \rightarrow ppK^{+}$	0.3179	0.9919	0.9856	0.9757	0.3032
$B^0 \rightarrow J/\psi K^0_s \rightarrow pp K^0_s$	0.2325	0.9789	0.9866	0.9774	0.2195
$B^0 \rightarrow \eta_c K^0_s \rightarrow ppK^0_s$	0.2191	0.9789	0.9868	0.9762	0.2066

*

VI. Preliminary Results

JUILINIALY OF KESU	Summar	y of	Resu	JIts
--------------------	--------	------	------	-------------

Yield	Eff. (응)	Significance (σ)	Mass (MeV/c ²)	Product BF (10 ⁻⁶)
596.2 ± 26.5	34.9	40.1	3096.44 ± 0.21	$2.21 \pm 0.10 \pm 0.06$
378.4 ± 29.9	31.8	18.1	2978.75 ± 2.10	$1.54 \pm 0.12 \pm 0.04$
158.6 ± 13.1	23.3	20.8	3095.91 ± 0.37	0.89 ± 0.07 ± 0.03
106.3 ± 5.0	21.9	9.8	2982.13 \pm 0.01	$0.63 \pm 0.03 \pm 0.02$
	Yield 596.2 ± 26.5 378.4 ± 29.9 158.6 ± 13.1 106.3 ± 5.0	Yield Eff. (%) 596.2 ± 26.5 34.9 378.4 ± 29.9 31.8 158.6 ± 13.1 23.3 106.3 ± 5.0 21.9	YieldEff. (%)Significance (σ)596.2 ± 26.534.940.1378.4 ± 29.931.818.1158.6 ± 13.123.320.8106.3 ± 5.021.99.8	YieldEff. (%)Significance (σ)Mass (MeV/c2)596.2 ± 26.534.940.13096.44 ± 0.21378.4 ± 29.931.818.12978.75 ± 2.10158.6 ± 13.123.320.83095.91 ± 0.37106.3 ± 5.021.99.82982.13 ± 0.01

Modes (MeV/c ²)		(MeV/c²)	c ²) Product Branching Fraction (10 ⁻⁶)		
Fiotes	measured*	PDG 2014	measured	PDG 2014	
$B^+ \rightarrow J/\psi K^+ \rightarrow ppK^+$	3096.44 ± 0.21	3096.92 ± 0.01	$2.21 \pm 0.10 \pm 0.06$	2.18 ± 0.07	
$B^+ \rightarrow \eta_c K^+ \rightarrow ppK^+$	2978.75 \pm 2.10	2983.6 ± 0.7	$1.54 \pm 0.12 \pm 0.04$	1.45 ± 0.23	
$B^0 \rightarrow J/\psi K^0_s \rightarrow pp K^0_s$	3095.91 ± 0.37	3096.92 ± 0.01	$0.89 \pm 0.07 \pm 0.03$	0.93 ± 0.04	
$B^0 \rightarrow \eta_c K^0_s \rightarrow ppK^0_s$	2982.13 \pm 0.01	2983.6 \pm 0.7	$0.63 \pm 0.03 \pm 0.02$	0.60 ± 0.11	

* statistical error only

Systematic Uncertainties of Branching Fraction

- Tracking Efficiency 0.35% per charged track (BN #1165)
- K_s^0 reconstruction efficiency use global result $R = \frac{S_{data}}{S_{MC}} = (97.89 \pm 0.41 \pm 0.60)\%$ (BN #1207)
- Proton Identification (PID) (BN #1279)
- K/π Identification (KID) (BN #779)
- Statistical Error of MC sample 0.15~0.19% calculated from fitted yield of signal MC
- # of BB Pairs Error Total N(BB) for Exp. 7 65 = $(771.581 \pm 10.566) \times 10^{6}$ (Belle Homepage)

VII. Systematic Uncertainties

Likelihood Ratio Cut Systematic Errror

- estimated from the control samples : $B^+ \rightarrow J/\psi K^+ \rightarrow ppK^+ \& B^0 \rightarrow J/\psi K^0_s \rightarrow ppK^0_s$
- compare the branching fractions calculated using the LR cuts determined varying the expected number of background B by as much as 0.02.

Fitting Systematic Error

estimate by varying the order of the background polynomial function

(1) 1st order polynomial \rightarrow 2nd order polynomial

(2) constant $\rightarrow 1^{st}$ order polynomial

(3) 1st order polynomial \rightarrow 2nd order polynomial

PDF	M _{bc}	ΔE	M _{pp}
Signal * resonant	Gaussian	double Gaussian	Gaussian - J/ψ Voigtian - η _c
Background 1 combinatoric	Argus	1 st order polynomial ()	constant 2
Background 2 ** non resonant "peaking bkg"	Gaussian	double Gaussian	1 st order polynomial ③

*
$$B^+ \rightarrow (cc) K^+ \rightarrow ppK^+$$

(parameters floated)

****** $B^+ \rightarrow ppK^+$

VII. Systematic Uncertainties

Summary of Systematic Uncertainties of Branching Fraction

List of Systematical Errors for Each Decay Mode (%)

	$B^+ \rightarrow p$	pbarK ⁺	$B^0 \rightarrow ppbarK_s^0$	
Selection Criterion	$B^+ \rightarrow J/\psi K^+ \rightarrow ppK^+$	$B^+ \rightarrow \eta_c \ K^+ \rightarrow ppK^+$	$B^0 \rightarrow J/\psi K^0_s \rightarrow ppK^0_s$	$B^0 \rightarrow \eta_c \ K^0{}_s \rightarrow \ ppK^0{}_s$
Tracking efficiency	1.05	1.05	0.70	0.70
Proton identification (PID)	0.82	0.81	0.80	0.79
K/π Identification (KID)	0.87	0.88	-	-
K ⁰ _s reconstruction efficiency	-	-	0.73	0.73
Likelihood ratio cut	1.35	1.35	1.53	1.53
MC statistical error	0.19	0.18	0.16	0.15
Fitting systematic error	0.50	1.43	0.63	0.75
Number of BB pairs error	1.37	1.37	1.37	1.37
Total	2.55	2.88	2.51	2.54

Summary & Plans

Summary

- Studying the decay B \rightarrow (ccbar)K \rightarrow ppbarK to measure the branching fraction for $\eta_c(2S)$, $\Psi(3770)$, X(3872), X(3915) to ppbar with 711 fb⁻¹ integrated luminosity based on the blind analysis.
- The masses and the branching fractions of decays to ppbar of $\eta_c \& J/\psi$ control samples are measured from 3-D fit and the results are consistent with PDG.
- The LR cut is determined for each decay mode
- Systematic error study was done. (Would more studies be needed?)

<u>Plan</u>

- study more streams of continuum and BB generic MC to model the background PDF of blind region
- estimate the expected upper limits for the branching fractions of $\eta_c(2S)$, $\Psi(3770)$, X(3872), and X(3915)
- update the Belle Note #1347
- open the blind box this summer

 $J/\psi(1S) \rightarrow p\bar{p}$

 $\eta_{c}(1S) \rightarrow p\bar{p}$

projections onto signal region 28

(c \bar{c}) $\rightarrow p\bar{p}$

BB Generic MC ($c\bar{c}$) $\rightarrow p\bar{p}$

