Study of $B \rightarrow p \bar{p} K$ Decays

$$
\begin{aligned}
& B^{+} \rightarrow(c \bar{c}) K^{+} \\
& \rightarrow p \bar{p} K^{+} \\
& B^{0} \rightarrow(c \bar{c}) K_{S}^{0} \rightarrow p \bar{p} K_{S}^{0}
\end{aligned}
$$

July 13, 2016
Seoul National University
Jaekeum Lee
jklee@hep1.snu.ac.kr

Charmonium(-like) states in $B \rightarrow p \bar{p} K$

- Motivation
- measure the branching fractions of the decays $B^{+} \rightarrow p \bar{p} K^{+}$and $B^{0} \rightarrow p \bar{p} K_{s}{ }^{0}$ for intermediate charmonium(-like) states such as $\eta_{c}(2 S), \Psi(3770), X(3872)$ and $X_{c o}(2 P)$ (was X(3915)).
- will be of interest for future experiment PANDA which plans to study charmonium and charmed particle production in pp annihilations.
- Analysis features
- based on blind analysis ($3.5 \mathrm{GeV} / \mathrm{c}^{2}-4.0 \mathrm{GeV} / \mathrm{c}^{2}$)
- continuum suppression using modified Fox-Wolfram moments
- two dimensional unbinned likelihood fit for signal yield extraction (past work)
- three dimensional unbinned likelihood fit for signal yield extraction (ongoing work)
- test mode $J / \psi \rightarrow \mathrm{pp}$, and $\eta_{c} \rightarrow \mathrm{pp}$ in $\mathrm{B}^{ \pm} \rightarrow \mathrm{ppK}^{ \pm}, \mathrm{B}^{0} \rightarrow \mathrm{ppK}_{s}{ }^{0}$

Charged Track Selection

- Charged Track Selection Criteria

Selection Criterion	modes		
	$p p K^{+}$	$p p K_{S}{ }^{0}$	
$\|d r\|$ of $p+$	$<0.3 \mathrm{~cm}$	$<0.3 \mathrm{~cm}$	
$\|d z\|$ of $p+$	$<3.0 \mathrm{~cm}$	$<3.0 \mathrm{~cm}$	
$\|d r\|$ of $p+$	$<0.3 \mathrm{~cm}$	$<0.3 \mathrm{~cm}$	
$\|d z\|$ of $p+$	$<3.0 \mathrm{~cm}$	$<3.0 \mathrm{~cm}$	
PID ($\mathrm{p}+\mathrm{l}$)	> 0.6	> 0.6	
$\operatorname{PID}(\mathrm{p}+\mathrm{\\|}$)	> 0.6	>0.6	
PID (p-\|K)	>0.6	>0.6	
$\operatorname{PID}(\mathrm{p}-\mathrm{\\|}$)	>0.6	>0.6	
$\|d r\|$ of K	$<0.3 \mathrm{~cm}$		
$\|d z\|$ of K	$<3.0 \mathrm{~cm}$		
$\operatorname{PID}(\mathrm{K} \mid \pi)$	> 0.6		

$K_{s}{ }^{0}$ Selection / Reconstruction

- $K_{s}{ }^{0}$ Reconstruction
- reconstructed from $\Pi^{+} \Pi^{-}$(stored in MDST_Vee2 table)
- Mass constraint \& Vertex Finding Simultaneously (vertex err == 0)
- $K_{s}{ }^{0}$ Selection
- goodKs condition : goodKs > 0
- invariant mass cut : $0.482 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{m}\left(\pi^{+} \Pi^{-}\right)<0.514 \mathrm{GeV} / \mathrm{c}^{2}(\pm 4 \sigma)$

$$
\left(\mathrm{m}\left(\mathrm{~K}_{\mathrm{s}}{ }_{\mathrm{s}}\right) \sim 0.498 \mathrm{GeV} / \mathrm{c}^{2}, \sigma \sim 0.004 \mathrm{GeV} / \mathrm{c}^{2}, 4 \sigma \sim 0.016 \mathrm{GeV} / \mathrm{c}^{2}\right)
$$

- Reconstructed $K_{s}{ }^{0}$ mass distributions w/ and w/o goodKs cut

B reconstruction

- B reconstruction
- $\quad B^{+}$: reconstructed by p, pbar and K^{+}
- B^{0} : reconstructed by p, pbar and $K_{\text {s }}$
- Mass constraint \& Vertex Finding Simultaneously (vertex err == 0)
- The Candidate and Signal Region
- determined from signal MC

	$\mathbf{M}_{\mathrm{bc}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$\Delta \mathrm{E}(\mathrm{GeV})$
Candidate Region	$5.20<\mathrm{M}_{\mathrm{bc}}<5.30$	$-0.10<\Delta \mathrm{E}<0.30$
Signal Region	$5.27<\mathrm{M}_{\mathrm{bc}}<5.29$	$-0.05<\Delta \mathrm{E}<0.05$

- M_{bc} distribution with $|\Delta \mathrm{E}|<0.05 \mathrm{GeV}$ and $\Delta \mathrm{E}$ distribution with $5.27 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\mathrm{bc}}<5.29 \mathrm{GeV} / \mathrm{c}^{2}$

$\mathrm{Mbc}_{\mathrm{bc}}[\mathrm{GeV} / \mathrm{c}]$

$\triangle \mathrm{E}[\mathrm{GeV}]$

$\mathrm{Mbc}_{\mathrm{b}}[\mathrm{GeV}$

$\begin{array}{llllllll}-0.1 & -0.05 & 0 & 0.05 & 0.1 & 0.15 & 0.2 & 0.25 \\ & 0.3 & 0.3\end{array}$

Data

	Exp . \#	$N(B B)$
Data Sets		
HadronB (J) on-resonance	Exp. 7 to Exp. 65	772×10^{6}
Signal Samples: Signal MC		
$B^{+} \rightarrow$ ppbarK ${ }^{+}$	Exp. 7 to Exp. 65	455,233
$B^{0} \rightarrow \mathrm{ppbarK}^{0}{ }_{s}$	Exp. 7 to Exp. 65	102,620
$B^{+} \rightarrow J / \psi K^{+} \rightarrow$ ppbarK ${ }^{+}$	Exp. 7 to Exp. 65	0.1 M
$B^{+} \rightarrow \eta_{C} K^{+} \rightarrow$ ppbarK ${ }^{+}$	Exp. 7 to Exp. 65	0.1 M
$B^{+} \rightarrow \mathrm{J} / \psi K^{0}{ }_{s} \rightarrow$ ppbarK ${ }_{s}$	Exp. 7 to Exp. 65	0.1 M
$B^{+} \rightarrow \eta_{C} K^{0}{ }_{s} \rightarrow$ ppbarK ${ }_{s}$	Exp. 7 to Exp. 65	0.1 M
Background Samples: Generic continuum MC		
on-resonance charm MC	Exp. 7 to Exp. 65	1 stream
on-resonance uds MC	Exp. 7 to Exp. 65	1 stream

Continuum Background

- Continuum events
- $e^{+} e^{-} \rightarrow q q$ where $q=u, d, s$, and c
- the dominant background for charmless B decays
- about a three times larger cross section than $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow B B$ events
" "back-to-back" jet-like while the signal BB events are "spherical"

IV. Continuum Suppression

Continuum Suppression

- Likelihood method based on Event Shape Variables: KSFW and $\cos \theta_{B}$
- KSFW (Kakuno Super Fox Wolfram) moments
event-shape variable calculated by Fisher method using angles of momenta, etc.
- $\cos _{B}$
the cosine of the angle between the B flight direction and the beam direction in $Y(4 S)$ rest frame
- Data samples
- Signal sample
- Background sample
$\mathrm{B}^{+} \rightarrow \mathrm{ppK}^{+} / \mathrm{B}^{+} \rightarrow \mathrm{ppK}_{s}{ }^{0}$ signal MC
on-resonance continuum (uds + charm) MC

KSFW moments distributions

$\cos \theta_{B}$

Likelihood Ratio

Optimization of LR Cut

- Likelihood Ratio

$$
\text { com bined } \quad L R=\frac{L R_{K S F W} \times L R_{\text {cosb }}}{\boldsymbol{L} R_{K S F W} \times L R_{\text {cosb }}+\left(1-L R_{K S F W}\right) \times\left(1-L R_{\text {cosb }}\right)}
$$

- Figure-Of-Merit Study

$$
\begin{array}{cl}
\boldsymbol{S} \\
\sqrt{\boldsymbol{S}+\boldsymbol{B}} & \begin{array}{l}
\boldsymbol{S} \text { the expected } \\
\boldsymbol{B} \text { the expeded }
\end{array} \begin{array}{l}
\text { mum bers of signal events } \\
\text { mum bers of badkground }
\end{array} \text { events }
\end{array}
$$

- Estimation of S / B
- $\quad S$ calculated from the signal MC using PDG branching fractions with $772 \times 10^{6} \mathrm{BB}$ pairs
- B calculated from on-resonance continuum MC data (uds + charm) normalized to real data

IV. Continuum Suppression

Optimization of LR Cut

- Figure-Of-Merit Plots as a function of likelihood ratio

Optimization of LR Cut (NEW)

- Figure-Of-Merit Plots as a function of likelihood ratio of control samples

V. Signal Yield Extraction

Signal Yield Extraction

- Signal Yield Extraction

3-Dimensional Unbinned Likelihood Fit on $M_{b c}-\Delta E-M_{p p}$ plane

- Test modes

$$
\begin{aligned}
& \mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+} \rightarrow \mathrm{ppK}^{+} \\
& \mathrm{B}^{+} \rightarrow \eta_{c} \mathrm{~K}^{+} \rightarrow \mathrm{ppK}^{+} \\
& \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{s}^{0} \rightarrow \mathrm{ppK}_{s}^{0} \\
& \mathrm{~B}^{0} \rightarrow \eta_{c} \mathrm{~K}_{s}^{0} \rightarrow \mathrm{ppK}_{s}^{0}
\end{aligned}
$$

- Determination of Signal and Background PDFs

PDF	$\mathbf{M}_{\text {bc }}$	$\Delta \mathrm{E}$	M_{pp}
Signal * resonant	Gaussian	double Gaussian	$\begin{aligned} & \text { Gaussian }-J / \Psi \\ & \text { Voigtian }-\eta_{c} \end{aligned}$
Background 1 combinatoric	Argus	$1^{\text {st }}$ order polynomial	const.
Background 2 ** non resonant "peaking bkg"	Gaussian	double Gaussian	$1^{\text {st }}$ order polynomial
$\begin{array}{ll} * & B^{+} \rightarrow(c c) K^{+} \rightarrow p p K^{+} \\ * * & B^{+} \rightarrow p p K^{+} \end{array}$			(parameters floated)

V. Signal Yield Extraction

$$
\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi(1 S) K^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} K^{+}
$$

MC: J/ $\psi \Delta \mathrm{E}$ (Charged / Signal Region)

V. Signal Yield Extraction

$$
B^{+} \rightarrow \eta_{c}(1 S) K^{+} \rightarrow p \bar{p} K^{+}
$$

V. Signal Yield Extraction

$$
B^{0} \rightarrow J / \Psi(1 S) K_{S}^{0} \rightarrow p \overline{\mathrm{p}} K_{S}^{0}
$$

V. Signal Yield Extraction

$$
B^{0} \rightarrow \eta_{c}(1 S) K_{S}^{0} \rightarrow p \bar{p} K_{S}^{0}
$$

VI. Preliminary Results

Branching Fractions

- Calculation of Branching Fractions

$$
\mathcal{B}(B \rightarrow(c \bar{c}) K) \times \mathcal{B}((c \bar{c}) \rightarrow p \bar{p})=\frac{N_{\text {measured }}}{N_{B \bar{B}}} \times \frac{1}{\varepsilon_{\text {total }}}
$$

$$
\varepsilon_{\text {total }}=\varepsilon_{M C} \times f_{K I D / K O S}{ }^{*} \times f_{\text {protonPID }} \times f_{\text {anti-protonPID }}
$$

- Efficiency Correction Factors

Modes	MC Eff.	KID / KOS	proton PID	anti-proton PID	Total Eff.
$B^{+} \rightarrow J / \psi K^{+} \rightarrow P p K^{+}$	0.3489	0.9916	0.9860	0.9760	0.3329
$B^{+} \rightarrow \eta_{c} K^{+} \rightarrow P p K^{+}$	0.3179	0.9919	0.9856	0.9757	0.3032
$B^{0} \rightarrow J / \psi K_{s}^{0} \rightarrow P^{+} K_{s}^{0}$	0.2325	0.9789	0.9866	0.9774	0.2195
$B^{0} \rightarrow \eta_{c} K_{s}^{0} \rightarrow P_{s} K_{s}^{0}$	0.2191	0.9789	0.9868	0.9762	0.2066

VI. Preliminary Results

Summary of Results

Modes	Yield	Eff. $(\%)$	Significance (σ)	Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Product BF $\left(10^{-6}\right)$
$B^{+} \rightarrow J / \psi K^{+} \rightarrow p p K^{+}$	596.2 ± 26.5	34.9	40.1	3096.44 ± 0.21	$2.21 \pm 0.10 \pm 0.06$
$B^{+} \rightarrow \eta_{c} K^{+} \rightarrow p p K^{+}$	378.4 ± 29.9	31.8	18.1	2978.75 ± 2.10	$1.54 \pm 0.12 \pm 0.04$
$B^{0} \rightarrow J / \psi K_{s}^{0} \rightarrow p p K_{s}^{0}$	158.6 ± 13.1	23.3	20.8	3095.91 ± 0.37	$0.89 \pm 0.07 \pm 0.03$
$B^{0} \rightarrow \eta_{c} K_{s}^{0} \rightarrow \mathrm{PpK}_{s}^{0}$	106.3 ± 5.0	21.9	9.8	2982.13 ± 0.01	$0.63 \pm 0.03 \pm 0.02$

Modes	Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$		Product Branching Fraction $\left(10^{-6}\right)$	
	measured*	PDG 2014	measured	PDG 2014
$B^{+} \rightarrow J / \psi K^{+} \rightarrow P p K^{+}$	3096.44 ± 0.21	3096.92 ± 0.01	$2.21 \pm 0.10 \pm 0.06$	2.18 ± 0.07
$B^{+} \rightarrow \eta_{c} K^{+} \rightarrow P p K^{+}$	2978.75 ± 2.10	2983.6 ± 0.7	$1.54 \pm 0.12 \pm 0.04$	1.45 ± 0.23
$B^{0} \rightarrow J / \psi K_{s}^{0} \rightarrow P p K_{s}^{0}$	3095.91 ± 0.37	3096.92 ± 0.01	$0.89 \pm 0.07 \pm 0.03$	0.93 ± 0.04
$B^{0} \rightarrow \eta_{c} K_{s}^{0} \rightarrow P p K_{s}^{0}$	2982.13 ± 0.01	2983.6 ± 0.7	$0.63 \pm 0.03 \pm 0.02$	0.60 ± 0.11

Systematic Uncertainties of Branching Fraction

" Tracking Efficiency 0.35\% per charged track (BN \#1165)

- K_{s}^{0} reconstruction efficiency use global result $R=\frac{s_{\text {data }}}{s_{M C}}=(97.89 \pm 0.41 \pm 0.60) \%$ (BN \#1207)
- Proton Identification (PID) (BN \#1279)
- K/m Identification (KID) (BN \#779)
- Statistical Error of MC sample 0.15~0.19\% calculated from fitted yield of signal MC
- \# of BB Pairs Error

Total N(BB) for Exp. $7-65=(771.581 \pm 10.566) \times 10^{6}$ (Belle Homepage)

VII. Systematic Uncertainties

Likelihood Ratio Cut Systematic Errror

- estimated from the control samples : $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \rightarrow \mathrm{ppK} K^{+} \& \mathrm{~B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{\mu} \mathrm{K}_{\mathrm{s}} \rightarrow \mathrm{ppK}{ }_{s}$
- compare the branching fractions calculated using the LR cuts determined varying the expected number of background B by as much as 0.02 .

VII. Systematic Uncertainties

Fitting Systematic Error

- estimate by varying the order of the background polynomial function
(1) $1^{\text {st }}$ order polynomial $\rightarrow 2^{\text {nd }}$ order polynomial
(2) constant $\quad \rightarrow 1^{\text {st }}$ order polynomial
(3) $1^{\text {st }}$ order polynomial $\rightarrow 2^{\text {nd }}$ order polynomial

PDF	M_{bc}	$\Delta \mathrm{E}$	$M_{p p}$
Signal * resonant	Gaussian	double Gaussian	$\begin{aligned} & \text { Gaussian - J/ } \\ & \text { Voigtian - } \eta_{c} \end{aligned}$
Background 1 combinatoric	Argus	$1^{\text {st }}$ order polynomial (1)	constant (2)
Background 2 ** non resonant "peaking bkg"	Gaussian	double Gaussian	$1^{\text {st }}$ order polynomial (3)
$\begin{array}{ll} * & B^{+} \rightarrow(c c) K^{+} \rightarrow p p K^{+} \\ * * & B^{+} \rightarrow p p K^{+} \end{array}$			(parameters floated)

Summary of Systematic Uncertainties of Branching Fraction

- List of Systematical Errors for Each Decay Mode (\%)

Selection Criterion	$\mathrm{B}^{+} \rightarrow \mathrm{ppbarK}^{+}$		$\mathrm{B}^{0} \rightarrow \mathrm{ppbarK}^{\text {e }}$ s	
	$\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \rightarrow \mathrm{ppK}^{+}$	$\mathrm{B}^{+} \rightarrow \mathrm{n}_{\mathrm{c}} \mathrm{K}^{+} \rightarrow \mathrm{ppK}^{+}$	$\underset{\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}^{0}}{\mathrm{PPK}_{\mathrm{s}}^{0}} \rightarrow$	$\mathrm{B}^{0} \rightarrow \mathrm{n}_{\mathrm{c}} \mathrm{K}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{ppK}^{0}{ }_{\mathrm{s}}$
Tracking efficiency	1.05	1.05	0.70	0.70
Proton identification (PID)	0.82	0.81	0.80	0.79
K/n Identification (KID)	0.87	0.88	-	-
$\mathrm{K}_{\text {S }}^{0}$ reconstruction efficiency	-	-	0.73	0.73
Likelihood ratio cut	1.35	1.35	1.53	1.53
MC statistical error	0.19	0.18	0.16	0.15
Fitting systematic error	0.50	1.43	0.63	0.75
Number of BB pairs error	1.37	1.37	1.37	1.37
Total	2.55	2.88	2.51	2.54

Summary \& Plans

Summary

- Studying the decay $B \rightarrow$ (ccbar) $K \rightarrow$ ppbarK to measure the branching fraction for $\eta_{c}(2 S), \Psi(3770), X(3872)$, X(3915) to ppbar with $711 \mathrm{fb}^{-1}$ integrated luminosity based on the blind analysis.
- The masses and the branching fractions of decays to ppbar of $\eta_{c} \& J / \psi$ control samples are measured from 3D fit and the results are consistent with PDG.
- The LR cut is determined for each decay mode
- Systematic error study was done. (Would more studies be needed?)

Plan

- study more streams of continuum and BB generic MC to model the background PDF of blind region
- estimate the expected upper limits for the branching fractions of $\eta_{c}(2 S), \Psi(3770), X(3872)$, and $X(3915)$
- update the Belle Note \#1347
- open the blind box this summer

$\mathbf{M}_{\mathrm{m}}\left[\mathrm{GeV} / \mathrm{c}^{2} \boldsymbol{1}\right.$
$M_{b c}: J / \psi(1 S)$

$$
J / \Psi(1 S) \rightarrow p \bar{p}
$$

$\mathbf{M}_{\mathrm{pp}}: \mathbf{J} / \psi(\mathbf{1 S})$

3.053 .063 .073 .083 .093 .13 .113 .123 .133 .143 .15

$$
\mathrm{M}_{\mathrm{pp}}: \mathrm{J} / \psi(1 \mathrm{~S})
$$

$$
L R>0.1
$$

$\mathrm{M}_{\mathrm{pp}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$
projections onto slgnal region 27

M_{bc} : Blind Region: 3.5-4.0 GeV

$$
(c \bar{c}) \rightarrow p \bar{p}
$$

Δ E: Blind Region: 3.5-4.0 GeV

$M_{p p}$: Blind Region: 3.5-4.0 GeV $\mathrm{LR}_{\mathrm{R}}>0.90$

BB Generic MC ($c \bar{c}$) $\rightarrow p \bar{p}$

Δ E: Blind Region: 3.5-4.0 GeV

$$
\Delta E[\mathrm{GeV}]
$$

Δ E: Blind Region: 3.5-4.0 GeV

$M_{p p}$: Blind Region: 3.5-4.0 GeV $\underline{L}_{R}>0.85$

$\mathrm{M}_{\mathrm{nn}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$
$M_{p p}$: Blind Region: 3.5-4.0 GeV ${\underset{L R}{ }>0.90}$

