## CP violation in $\tau$ decay

## S. Ryu<sup>1</sup>

<sup>1</sup>Department of Physics and Astronomy Seoul National University

Workshop on YoungPyung, 2010 Belle Collaboration



イロト イ理ト イヨト イヨト

## Outline

## CP violation in SM

- Understanding of CP asymmetry
- CP Mechanism

2 CP violation in  $\tau$  decay • Ideas of CPV in  $\tau$ •  $\tau \to K\pi\nu$  decay

•  $\tau \to K \pi \pi \nu$  decay

### $^{3}$ status of $au ightarrow extsf{K}_{S}h\pi^{0}$

- Motivation
- Event selection
- Invariant Mass distribution



イロト イポト イヨト イヨト

## Outline

## CP violation in SM

- Understanding of CP asymmetry
- CP Mechanism

2 CP violation in τ decay
 • Ideas of CPV in τ

- $\tau \to K \pi \nu$  decay
- $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o {\sf K}_{\cal S} {\sf h} \pi^{\sf 0}$

- Motivation
- Event selection
- Invariant Mass distribution



## Outline

## OP violation in SM

- Understanding of CP asymmetry
- CP Mechanism

#### 2 CP violation in $\tau$ decay

- Ideas of CPV in  $\tau$
- $\tau \to K \pi \nu$  decay
- $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o K_{\mathcal{S}}h\pi^0$

- Motivation
- Event selection
- Invariant Mass distribution



< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP violation in au decay atus of  $au o K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

## Outline

## CP violation in SM

#### Understanding of CP asymmetry

OP Mechanism

2 CP violation in  $\tau$  decay • Ideas of CPV in  $\tau$ •  $\tau \to K\pi\nu$  decay

•  $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o {\sf K}_{\cal S} {\sf h} \pi^{\sf 0}$

- Motivation
- Event selection
- Invariant Mass distribution



CP violation in  $\tau$  decay status of  $\tau \rightarrow K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

#### Origin of CP asymmetry Electroweak and Yukawa coupling

$$\mathbf{V}_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

#### • Present known source of CP asymmetry is CKM matrix.

- CKM can be understood by Electroweak and Yukawa interaction of Higgs.
- Quark masses are not diagonalized in the flavor basis but diagonalized by unitary transformation. Then charged weak interaction are non-diagonal.
- 1 physical complex phase  $(\eta)$  bring the CP violation in quark sector.



CP violation in  $\tau$  decay status of  $\tau \rightarrow K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

#### Origin of CP asymmetry Electroweak and Yukawa coupling

$$\mathbf{V}_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Present known source of CP asymmetry is CKM matrix.
- CKM can be understood by Electroweak and Yukawa interaction of Higgs.
- Quark masses are not diagonalized in the flavor basis but diagonalized by unitary transformation. Then charged weak interaction are non-diagonal.
- 1 physical complex phase ( $\eta$ ) bring the CP violation in quark sector.



CP violation in  $\tau$  decay status of  $\tau \rightarrow K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

$$\mathbf{V}_{\mathbf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Present known source of CP asymmetry is CKM matrix.
- CKM can be understood by Electroweak and Yukawa interaction of Higgs.
- Quark masses are not diagonalized in the flavor basis but diagonalized by unitary transformation. Then charged weak interaction are non-diagonal.
- 1 physical complex phase  $(\eta)$  bring the CP violation in quark sector.



CP violation in  $\tau$  decay status of  $\tau \rightarrow K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

$$\mathbf{V}_{\mathbf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Present known source of CP asymmetry is CKM matrix.
- CKM can be understood by Electroweak and Yukawa interaction of Higgs.
- Quark masses are not diagonalized in the flavor basis but diagonalized by unitary transformation. Then charged weak interaction are non-diagonal.
- 1 physical complex phase ( $\eta$ ) bring the CP violation in quark sector.



< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP violation in  $\tau$  decay status of  $\tau \rightarrow K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

$$\mathbf{V}_{\mathbf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Present known source of CP asymmetry is CKM matrix.
- CKM can be understood by Electroweak and Yukawa interaction of Higgs.
- Quark masses are not diagonalized in the flavor basis but diagonalized by unitary transformation. Then charged weak interaction are non-diagonal.
- 1 physical complex phase ( $\eta$ ) bring the CP violation in quark sector.



< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP violation in au decay tatus of  $au o K_S h \pi^0$  Summary

Understanding of CP asymmetr CP Mechanism

## Outline

## 1 CP violation in SM

- Understanding of CP asymmetry
- CP Mechanism

# 2 CP violation in τ decay • Ideas of CPV in τ

- $\tau \to K \pi \nu$  decay
- $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o {\sf K}_{S} h \pi^{0}$

- Motivation
- Event selection
- Invariant Mass distribution



CP violation in au decay status of  $au o K_S h \pi^0$ Summary Understanding of CP asymmetry CP Mechanism

## **CP** Mechanism

#### General CP observable

CP violation arises from the inference

$$A_{X\to Y} = e^{i\theta_1} |A_1| e^{i\delta_1} + e^{i\theta_2} |A_2| e^{i\delta_2}$$

$$A_{\overline{X}\to\overline{Y}}=e^{-i\theta_1}|A_1|e^{i\delta_1}+e^{-i\theta_2}|A_2|e^{i\delta_2}$$

 $\theta_i$ : CP phase,  $\delta_i$ : scattering phase (strong phase)

$$A_{CP} = \frac{|A_{X \to Y}|^2 - |A_{\overline{X} \to \overline{Y}}|^2}{|A_{X \to Y}|^2 + |A_{\overline{X} \to \overline{Y}}|^2} = \frac{-2|A_1||A_2|\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)}{|A_1|^2 + |A_2|^2}$$



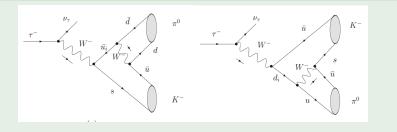
Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Outline

CP violation in SM
 Understanding of CP asymmetry
 CP Mechanism

CP violation in τ decay
 Ideas of CPV in τ

- $au o K \pi \nu$  decay
- $\tau \to K \pi \pi \nu$  decay


## 3 status of $au o {\sf K}_{\cal S} {\sf h} \pi^{\sf 0}$

- Motivation
- Event selection
- Invariant Mass distribution



Ideas of CPV in  $\tau$  $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay





Higher order contribution can only induce weak phase contribution (CKM)

$$A_{cp} = \frac{\Gamma(\tau \to K^+ \pi^0 \nu) - \Gamma(\tau \to K^- \pi^0 \nu)}{\Gamma(\tau \to K^+ \pi^0 \nu) + \Gamma(\tau \to K^- \pi^0 \nu)} \approx 2.3 \times 10^{-12}$$

#### what if we see the CP violation in $\tau$ decays ?

This indicates you found the new physics so called "beyond the SM"

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

#### Possible theory of CPV in $\tau$ decays

- R handed Vector Boson : L-R mixing
- Charged Higgs Doublet
- SUSY

In charged higgs model, higgs coupling is proportional to the mass difference of quarks.  $\rightarrow \Delta S \neq 0$  decays is promising in  $\tau$  CPV.

#### Experimental efforts

- Search for CP violation in  $\tau \to K \pi \nu$  decays has been published by CLEO (2002).
- Same tryout is going on by  $\tau$  group in BELLE

イロト イポト イヨト イヨト ヨ

1= 200

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Outline

CP violation in SM

 Understanding of CP asymmetry
 CP Mechanism

 CP violation in τ decay

 Ideas of CPV in τ

•  $\tau \rightarrow K \pi \nu$  decay •  $\tau \rightarrow K \pi \pi \nu$  decay

### 3 status of $au o {\sf K}_{\cal S} {\sf h} \pi^{\sf 0}$

- Motivation
- Event selection
- Invariant Mass distribution



Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## introduction

#### Situation

- CLEO has obtained the branching fraction with 13.3 fb<sup>-1</sup> data.
- CLEO defined CP observable and set the limit on it with simple guess on structure function.
- BELLE has finished the study on structure function with rather complicated.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Theory

Effective hamiltonian can be written by sum of SM and NP(new physics) term.

- $H_{eff} = H_{SM} + H_{NP}$
- $H_{SM} = \sin \theta_c \frac{G}{\sqrt{2}} \overline{\nu_{\tau}} \gamma_{\mu} (1 \gamma_5) \tau \overline{s} \gamma^{\mu} (1 \gamma_5) u + h.c$
- $H_{NP} = \sin \theta_c \frac{G}{\sqrt{2}} \eta_s \overline{\nu_\tau} (1 + \gamma_5) \tau \overline{s} u + h.c$

in the case of  $\tau \to K \pi \nu$ , hadronic current decays into two pseudo-scalar meson, which can be expanded in terms of the independent momenta  $(q_1 - q_2)^{\mu}$  and  $Q^{\mu} = q_1^{\mu} + q_2^{\mu}$ 

•  $J_{\mu} = \langle h_1(q_1)h_2(q_2)|\overline{u}\gamma_{\mu}s|0\rangle = (q_1 - q_2)^{\nu}T_{\nu\mu}F(Q^2) + Q_{\mu}F_s(Q^2)$ 

CP violating contribution incorporates to s-wave form factors by substitution:

• 
$$F_S(Q^2) \rightarrow \tilde{F}_S(Q^2) = F_S(Q^2) + \frac{\eta_S}{m_\tau} F_H(Q^2)$$

CP violation in SM CP violation in  $\tau$  decay status of  $\tau \to K_S h \pi^0$ Summary CP violation in  $\tau \to K \pi \nu$  decay  $\tau \to K \pi \pi \nu$  decay

## Theory

So, the amplitude for this channel,

$$M = \sin \theta_C \frac{G}{\sqrt{2}} \overline{u} \gamma_\mu (1 - \gamma_5) u[(q_1 - q_2)_\mu T^{\nu\mu} F + Q^\mu \tilde{F}_S]$$

The differential decay rate in hadronic rest frame,

$$\Gamma( au o K\pi
u_{ au}) = M^2 d\Pi = \sum_X (L_X W_X) d\Pi$$

Where  $L_X$  and  $W_X$ , (for unpolarized  $\tau$ )

|    | $W_X$                                              | $\overline{L}_X$                                                                               |
|----|----------------------------------------------------|------------------------------------------------------------------------------------------------|
| В  | $4(q_1)^2 F ^2$                                    | $rac{1}{3}(2+rac{m^2}{Q^2})-rac{1}{6}(1-rac{m_{tau}^2}{Q^2})(3\cos^2\psi-1)(3\cos^2eta-1)$ |
| SA | $Q^2  F_S ^2$                                      | $\frac{m_{\tau}^2}{C^2}$                                                                       |
| SF | $4\sqrt{Q^2} q_1 \mathit{Im}(F	ilde{F}_S^*)$       | $-rac{m_	au}{Q^2}\cos\psi\coseta$                                                             |
| SG | $-4\sqrt{Q^2} q_1 	extsf{Re}(	ilde{	ilde{F}}^*_S)$ | ° 0 🏸                                                                                          |
|    |                                                    | BELLE                                                                                          |
|    |                                                    |                                                                                                |

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Observable

### CP operation

$$d\Gamma_{\tau^{-}}(p_i, P, \eta_S) \rightarrow d\Gamma_{\tau^{+}}(-p_i, -P, \eta_S^*)$$

in order to get CP observable, subtract two the differential decay rates

CP observable

$$\Delta(p_i) = \frac{d\Gamma_{\tau^-}}{d\Pi}(p_i) - \frac{d\Gamma_{\tau^+}}{d\Pi}(-p_i)$$
$$\Sigma(p_i) = \frac{d\Gamma_{\tau^-}}{d\Pi}(p_i, \eta_S = 0) + \frac{d\Gamma_{\tau^+}}{d\Pi}(-p_i, \eta_S^* = 0)$$

CP observable

$$\xi^{-}(\boldsymbol{p}_{i}) = \frac{\Delta(\boldsymbol{p}_{i})}{\Sigma(\boldsymbol{p}_{i})} = \frac{\overline{L}_{SF}\Delta W_{SF}}{\sum \overline{L}_{X}W_{X}}$$

by the way, CLEO defines somewhat different observable not including CP odd term in denominator

$$\xi^{-}(\boldsymbol{p}_{i}) = \frac{\Delta(\boldsymbol{p}_{i})}{\Sigma(\boldsymbol{p}_{i})} = \frac{\overline{L}_{SF}\Delta W_{SF}}{\overline{L}_{B}W_{B} + \overline{L}_{SA}W_{SA}}$$

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Observable

#### Averaged CP observable

The CP observable,  $\xi$ , can be integrated within particular range of momentum and  $Q^2$ .

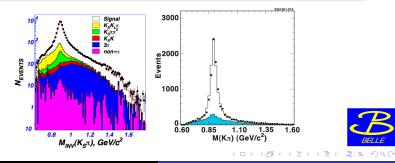
$$\langle \xi^{\pm} \rangle = \int_{\Delta Q^2} \xi^{\pm} \frac{d\Gamma^{\pm}}{dQ^2 d\Omega} d\Omega dQ^2$$

#### Characteristic of CP observable

- dependent on momentum and hadron invariant mass
- sensitive to structure function (model dependence)
  - $\rightarrow$  different from particular decay mode



Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay


## Hadron structure in $\tau \to K_S \pi \nu$

#### **BELLE** parametrization

- 2 solution for  $K_0^*(800) + K^*(892) + K_0^*(1430)$
- 1 solution for K<sub>0</sub><sup>\*</sup>(800) + K<sup>\*</sup>(892) + K<sup>\*</sup>(1410)

#### **CLEO** parametrization

CLEO used K\*(892) + K<sub>0</sub>\*(1430)





#### Ideas of CPV in $\tau$ $\tau \rightarrow K \pi \nu$ decay $\tau \rightarrow K \pi \pi \nu$ decay

## MC generation

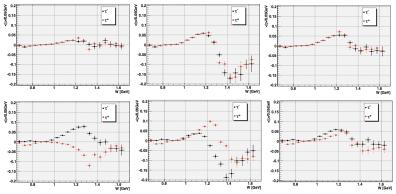
TAUOLA is MC generator for  $\tau$  decays which supports about 50 type of decays. For the decay  $\tau \to K \pi \nu$ ,  $F_S(Q^2)$  has been neglected In order to study CPV with MC data, need another event generator  $\rightarrow$  Do we need to fix TAUOLA?

#### event generation

It is possible to weight the event for some momentum and mass range by:

$$w = \frac{\sum (L_X W_X^{cp})}{\sum (L_X W_X^{tauola})}$$

 $W_{\chi}^{cp}$  is a function of  $\eta_S, s_1^2, s_2^2$  and  $Q^2$  so that don't need new generator.


This study has been done by Dr. Bischofberger and Prof. Hayashii (BELLE).

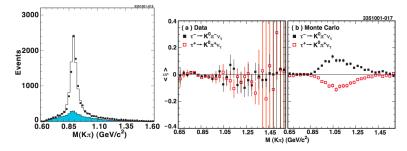


MC study

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

#### MC study for $<\xi>$ is done by using Belle parametrization result :




These result are obtained by assuming  $Im(\eta_S) = 1$ , maximal CP



イロト イポト イヨト イヨト

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  deca

## CLEO result and comparison



• CLEO limits (90 % C.L) -0.172 <  $\Lambda$  < 0.067 for 13.3 *fb*<sup>-1</sup>  $\Lambda$  is equivalent to  $\eta_S$  but use different normalizatioin

• 
$$F_S(Q^2) = 0$$
 and  $F_H = BW(K_0^*(1430))$ 



Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Outline

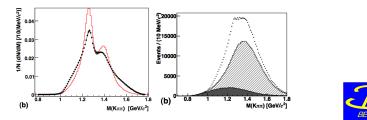
CP violation in SM
 Understanding of CP asymmetry
 CP Mechanism

2 CP violation in  $\tau$  decay • Ideas of CPV in  $\tau$ •  $\tau \to K\pi\nu$  decay

•  $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o K_{\mathcal{S}}h\pi^0$

- Motivation
- Event selection
- Invariant Mass distribution




 $\begin{array}{c} \text{CP violation in SM} \\ \text{CP violation in } \tau \text{ decay} \\ \text{status of } \tau \rightarrow K_S h \pi^0 \\ \text{Summary} \end{array} \qquad \begin{array}{c} \text{Idea} \\ \tau = \\ \tau = \end{array}$ 

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## introduction

- No one has studied for 3 hadron case, because
  - $\bullet\,$  No experimental information for the hadron structure for 3 hadron decay in  $\tau\,$  sector
  - seems rather complicated to obtain observable
- Dr. Lee Myung Jae has finished the study of this channel. but background contributes too much. cause problem of systematics in sensitivity.
- with successful extraction by unfolding method, we can see K<sub>1</sub>(1270) and K<sub>1</sub>(1400) clearly



A (10) A (10) A (10)

= 900

## Theory

like as in  $\tau \to K \pi \nu$  decay,  $H_{NP}$  added to  $H_{SM}$  but,

$$H_{NP} = \sin\theta_c \frac{G}{\sqrt{2}} \eta_S \overline{\nu_\tau} (1+\gamma_5) \tau \overline{s} u + \frac{\eta_P \overline{\nu_\tau}}{\eta_F \overline{\nu_\tau}} (1+\gamma_5) \tau \overline{s} \gamma_5 u + h.c$$

 $\eta_{S}$  is too small to contribute CP but  $\eta_{P}$  can contribute Hadronic current is also different

$$J^{\mu} = \langle K(p_1)\pi(p_2)\pi(p_3)|\bar{s}\gamma^{\mu}(1-\gamma^5)u|0\rangle$$
  
=  $[F_1(p_1-p_3)_{\nu} + F_2(p_2-p_3)_{\nu}]T^{\mu\nu} + iF_3\epsilon^{\mu\nu\rho\sigma}p_{1\nu}p_{2\rho}p_{3\sigma} + F_4Q^{\mu}$ 

- $F_1$  and  $F_2$  is due to  $K_1(1270)$  and  $K_1(1400)$  respectively.
- $F_3$  is the anomalous Wess-Zumino term.
- *F*<sub>4</sub> is scalar term, generally assumed to be negligible for this decay.



< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

## Theory

Similarly to the previous work,

$$F_4 
ightarrow \overline{F}_4 = F_4 + rac{F_H}{m_ au} \eta_F$$

where pseudo-scalar form factor,  $F_H$ , has been defined :

$$F_{H} = \langle K(p_{1})\pi(p_{2})\pi(p_{3})|\overline{s}\gamma^{5}u|0
angle$$



イロト イポト イヨト イヨ

Ideas of CPV in  $\tau$   $\tau \rightarrow K \pi \nu$  decay  $\tau \rightarrow K \pi \pi \nu$  decay

observables in  $\tau \to K \pi \pi \nu$  decay

3 kind of observable for 3 hadron decay. (general)

- Rate asymmetry The difference between the rate for the process and that for the associated anti-process In principle, same observable as for  $\tau \to K\pi$ .
- Polarization-dependent Rate asymmetry Integrate decay rate for particular kinematic angle by weighting
- Triple-product Rate Asymmetry

each asymmetry observable is proportional to  $|F_H|Im(\eta_P)$ .



< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation Event selection Invariant Mass distribution

## Outline

CP violation in SM
 Understanding of CP asymmetry
 CP Mechanism

2 CP violation in  $\tau$  decay • Ideas of CPV in  $\tau$ •  $\tau \to K\pi\nu$  decay

•  $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o K_{\mathcal{S}}h\pi^0$

#### Motivation

- Event selection
- Invariant Mass distribution



イロト イ理ト イヨト イヨト

Motivation Event selection Invariant Mass distribution

## Motivation

- Branching fraction measurement (latest result from ALEPH, 1998)
- Hadron Structure Function of 3 hadron in  $\tau$  decays.
- Study of Wess-Zumino anomaly term.
- CP violation ( for  $K_S \pi \pi^0 \nu$  decay )



Motivation Event selection Invariant Mass distribution

## Outline

CP violation in SM
 Understanding of CP asymmetry
 CP Mechanism

2 CP violation in  $\tau$  decay • Ideas of CPV in  $\tau$ •  $\tau \to K\pi\nu$  decay

•  $\tau \to K \pi \pi \nu$  decay

## 3 status of $au o K_{\mathcal{S}}h\pi^0$

- Motivation
- Event selection
- Invariant Mass distribution



イロト イ理ト イヨト イヨト

Motivation Event selection Invariant Mass distribution

## **Event selection**

- Tauskim
- $2 \le Ntrk \le 4$  , (at least 2 track from primary vertex)
- $20^{\circ} \leq \mathcal{M}_{\textit{missing}} \leq 175^{\circ}$
- Thrust > 0.9
- E<sub>ECL</sub> < 9.0 GeV</li>
- Event topology : 1-3
- Charge Sum = 0
- Particle ID LR cut : eid > 0.8 , muid > 0.8 , k/ $\pi$  > 0.7
- K<sub>S</sub><sup>0</sup> : zdist < 2cm, 1.5cm < flight length < 40cm
- $\pi^0$  : -6 < Sgg < 5
- $E_{\gamma} < 0.3 \text{ GeV}$

Motivation Event selection Invariant Mass distribution

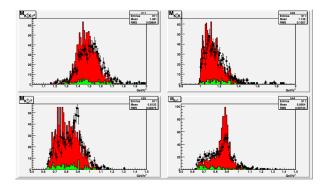
## Outline

CP violation in SM
 Understanding of CP asymmetry
 CP Mechanism

2 CP violation in  $\tau$  decay • Ideas of CPV in  $\tau$ •  $\tau \to K\pi\nu$  decay

•  $\tau \to K \pi \pi \nu$  decay

### 3 status of $au o K_{\mathcal{S}}h\pi^0$


- Motivation
- Event selection
- Invariant Mass distribution

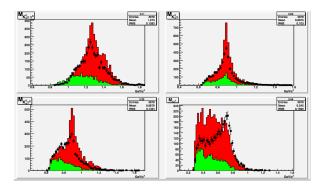


イロト イ理ト イヨト イヨト

Motivation Event selection Invariant Mass distribution

## Mass distribution for $\tau \to K_s K \pi^0 \nu$




- Statistics : 67.7 fb<sup>-1</sup>
- Vector current (  $K^*(892)$  and  $\rho(770)$  ) is seen
- expected background : 16.2 %

 $\tau \rightarrow K_S K$  : 5.6 %,  $\tau \rightarrow K_S \pi \pi^0$  : 7.6%, other  $\tau$  decays : 3.0%



Motivation Event selection Invariant Mass distribution

## Mass distribution for $\tau \to K_s \pi \pi^0 \nu$



- Statistics : 67.7 fb<sup>-1</sup>
- Vector current (  $K^*(892)$  and  $\rho(770)$  ) is seen
- expected background : 34.6%  $\tau \rightarrow K_S K \pi^0$  : 6.2 %,  $\tau \rightarrow K_S \pi$  : 7.4%,  $\tau \rightarrow K_S K_S \pi$  : 5.8%,  $\tau \rightarrow \pi \pi^0$  : %, other  $\tau$  decays : 10.0%

## Summary

- CP violation in  $\tau$  decay is a definite sign of New Physics
- CLEO has published limits for  $\tau \to K^0 \pi \nu$  and  $\tau \to \pi \pi^0 \nu$  from an analysis of data corresponding to 13.3fb<sup>-1</sup> and set the limit of CP violation by optimized CP observable  $\langle \xi \rangle$
- $\tau$  group in Belle has been studying CP violation with the same method carried out by CLEO.
- Not only for τ → Kπν but also for τ → Kππν decay, CP observable can be studied by similar method.
- Before studying CP violation in  $\tau$  decay, one should understand the structure of the decay.
- Too much background affects  $\tau \to K \pi \pi \nu$  decay so that  $\tau \to K_S \pi \pi^0 \nu$  decay can be another option to be studied
- Study of τ → K<sub>S</sub>π(K)π<sup>0</sup>ν channel is on going.
   preliminary result of branching fraction will be obtained soon.



Thank you !



### For Further Reading I



A. Author.

*Physics in tau lepton.* Some Press, 1990.



R. D. Kass

Search for CP violation in tau lepton decay Nuclear Physics B (Proc. Suppl.), 76 (1999) 215-218



Ken Kiers, etc.,

CP violation in  $\tau \rightarrow K\pi\pi\nu_{\tau}$ arXiv:0808.1707v1, [hep-ph] 12 Aug 2008



CLEO Collaboration

Search for CP violation in  $\tau \rightarrow K \pi \nu_{\tau}$  decays. *Phys. Rev. Lett.*, 88 (2002) 111803-1

David Delepine

CP violation in Semi-Leptonic  $\tau$  decays arXiv:hep-ph/0702107v1, 10 Feb 2007



▶ < 문 ▶ < E