PSD (Pulse shape discrimination) power analysis for NaI crystal

2016. 10. 19. Han-wool Joo Seoul National University on behalf of the KIMS-NaI collaboration

- PSD power of NaI crystal
- Experimental setup
- Data analysis
- Result
- Summary and Plan

PSD power of NaI crystal

- Different stopping power of nuclear recoils and electron recoils
 - Higher stopping power of nuclear recoils than that of electron recoils
 - -> Scintillation of nuclear recoils decays fasters than electron recoils
 - -> Different shape of scintillation

 Measurement of PSD power of NaI crystal is important for separating background events (induced by gammas) from expected dark matter induced events

Experimental setup (for nuclear recoils)

3 inch Bc501a Neutron detectors 2x2x1.5 cm^3 NaI crystal with two PMTs

2.43 MeV neutron beam from d-d fusion

tron target

from

Charge asymmetry

Charge ratio

Data analysis – gamma background rejection cuts for Neutron detectors

Tail charge : charge sum from 50 to 200 ns

TOF = $T_{NaI} - T_{ND}$

Discriminate nuclear recoils and electron recoils with natural logarithm of the mean decay time (MT)

: In (MT) = In (
$$\frac{\sum A_n t_n}{\sum A_n} - t_0$$
)

 A_n : charge of n th cluster t_n : time of n th cluster ($t_n - t_0 < 1.5$ us)

Calculate In(MT) for each keV

In(MT) summary

In(MT)

- PSD power of NaI crystal was measured with mean decay time difference between electron recoil and nuclear recoil events
- Difference in mean decay time at >8keV in Am/Be data and neutron generator data
- Additional PSD power measurement with another NaI crystal

Backup Slides

Calculated visible energy of I recoil events < 10 keV

(energy of neutron < 8 MeV)

X axis : Neutron scattering angle Y axis : Cross section (data from ENDF)

Deposit energy on NaI

ND3

Experimental setup for quenching factor measurement

Neutron Generator

• The fusion process of making neutrons $(1 \times 10^8 / s)$ D + D \rightarrow n + ³He (Q = 3.27 MeV)

$$E_n^{1/2} = \frac{1}{M_{He} + M_n} \left[\sqrt{M_d * M_n * E_d} * \cos \theta + \sqrt{M_d * M_n * E_d} * \cos^2 \theta + (M_{He} + M_n) \left[(M_{He} - M_d) E_d + M_{He} * Q \right] \right]$$

Trigger logic

Threshold voltage

- PMT : 10 mV
- Neutron Detectors : 50 mV

Pulse width trigger for neutron detector

• Neutron detectors : 10 ns

Pulse count trigger for NaI crystal

Two or more pulses in each PMT
& Sum of pulse count of PMTs is larger than four within 400 ns

1. Timing cut for PMTs

- Time difference between two PMTs < 0.2 (μ s)
- Start position of signal > 2.0 (μ s) (Trigger Position : 3 μ s)
- 2. Charge Asymmetry cut for PMTs (-0.6 < charge asymmetry < 0.6)

Neutron Detector PSD

Time of flight

X axis : Time difference between NaI signal and ND signal

For clusters with time0x[n] < det0.t0 + 1.5

$$MT = \frac{1}{2} * \left(\frac{\sum \text{clust00[n]}*(\text{time00[n]}-\text{det0.t0})}{\sum \text{clust00[n]}} + \frac{\sum \text{clust01[n]}*(\text{time01[n]}-\text{det0.t0})}{\sum \text{clust01[n]}}\right)$$
$$= \frac{1}{2} * \left(\frac{\sum \text{clust00[n]}*\text{time00[n]}}{\sum \text{clust00[n]}} + \frac{\sum \text{clust01[n]}*\text{time01[n]}}{\sum \text{clust01[n]}}\right) - \text{det0.t0}$$

clust0x[n]	: charge sum of n th cluster of PMT x
time0x[n]	: mean time of n th cluster of PMT x
det0.t0	: mean time of $1^{\mbox{\scriptsize st}}$ cluster of NaI signal

NaI deposit energy vs. ToF (NaI~ND / SNU Am/Be)

Compton : ~5% of Photoelectric

& assuming scattered gamma is uniformly distributed in 0~40 keV

-> There are only 11 gamma events per 1 keV (~1 %) (9,000 * 0.05 * 0.025)

Not sufficient to explain difference in SNU and KRISS result