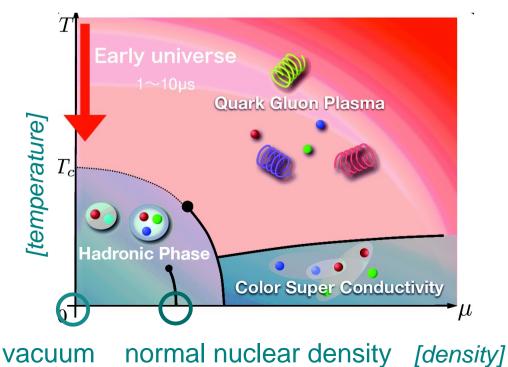
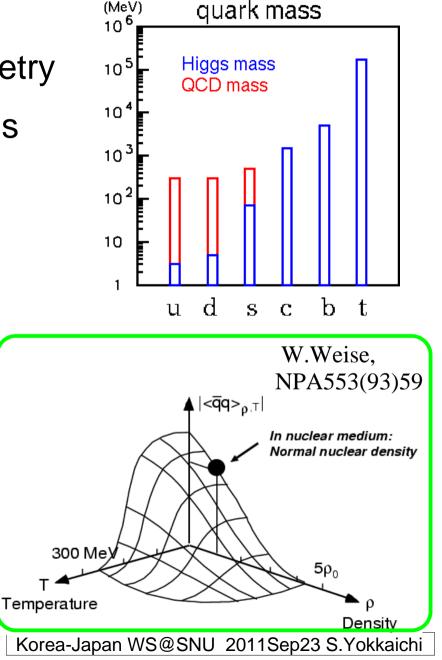

J-PARC E16 experiment and the hadron modification in nuclear matter

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)


- Contents
 - Chiral restoration and hadron spectral modification in nuclear matter
 - Experiments so far : vector meson (dilepton) measurements
 - J-PARC E16 experiment

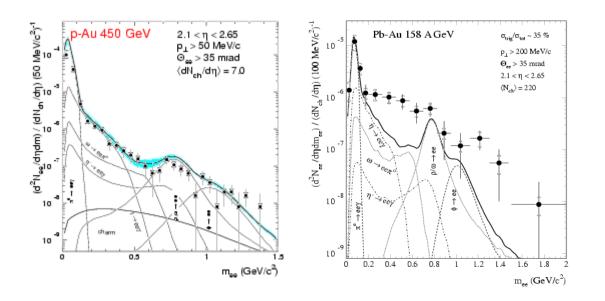


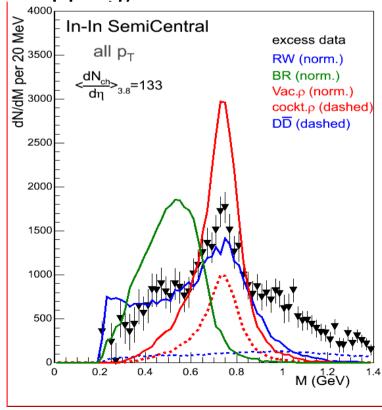
Mass and chiral symmetry in nuclear matter

- Origin of quark and hadron mass : spontaneous breaking of chiral symmetry
- In hot/dense matter, chiral symmetry is expected to be restored
 - hadron modification is also expected
 - many theoretical predictions...

Vector meson measurements in the world

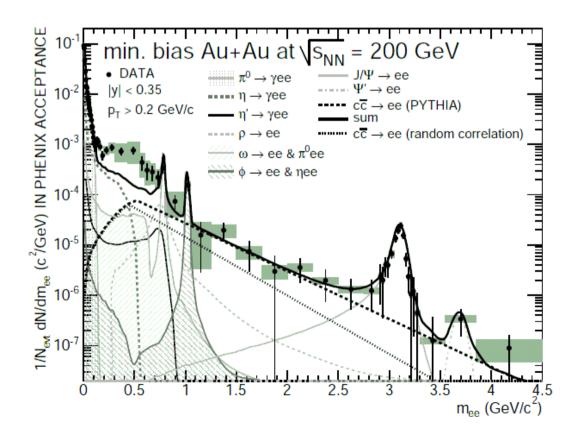
- HELIOS/3 (ee, $\mu\mu$) 450GeV p+Be / 200GeV A+A
- DLS (ee) 1 GeV A+A _
- CERES (ee) 450GeV p+Be/Au / 40-200GeV A+A
- <u>(ee,KK)</u> E325 <u>12GeV p+C/Cu</u>
- dilepton measurement - NA60 (μμ) 400GeV p+A/158GeV In+In
 - PHENIX (ee,KK) p+p/Au+Au
 - HADES (**) (ee) 3.5GeV p+A/ 1-2GeV A+A
 - CLAS-G7 (*) (ee) 1~2 GeV γ+A

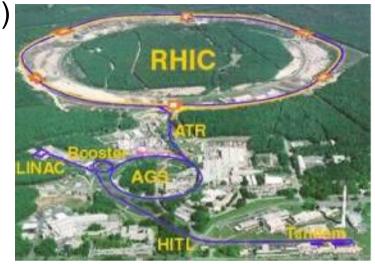

- published/ 'modified' published/ 'unmodified' running/in analysis future plan as of 2011/Jun
- <u>J-PARC E16 (ee)</u> <u>30/50GeV p+A / ~20GeV A+A ?</u>
- HADES,CBM /FAIR (ee) 2-8, 8-45 GeV A+A
- ~1 GeV γ+A - TAGX $(\pi\pi)$
- $(\pi\pi, KK)$ p+p/Au+Au - STAR
- (KK) 1.5~2.4 GeV γ+A - LEPS
- **CBELSA/TAPS**(*) ($\pi^{0}\gamma$) 0.64-2.53 GeV γ + p/Nb


- Why Heavy Ion ?
 - Chiral restoration as a signal of QGP (hot matter)
 - Cold dense matter is also investigated using p+A and γ +A reactions
- Why dilepton (lepton pair : e^+e^- and $\mu^+\mu^-$)?
 - Smaller final state interaction (distortion of spectrum) in nuclear matter is expected than the hadronic decays
- Why vector mesons?
 - They decay into lepton pair
 - other mesons (e.g. σ,η,η' ...) are also investigated
 - Baryons are also important of course
- Why invariant mass?
 - Most straightforward
 - other approaches:
 - width (interaction CS) from the nuclear transparency ratio
 - Mesic nuclei → next talk by Ohnishi-san
 Korea-Japan WS@SNU 2011Sep23 S.Yokkaichi

Dilepton spectra in Heavy Ion Collision

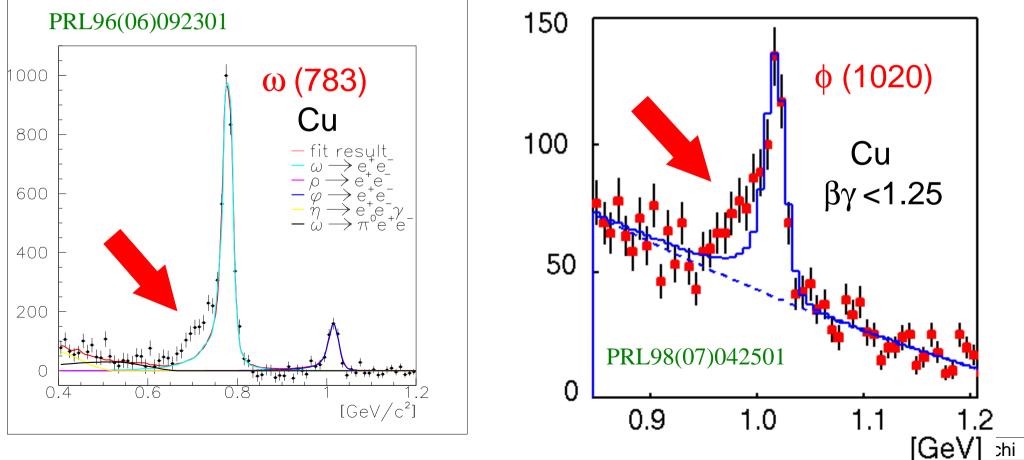
- CERES : e⁺e⁻ (EPJC 41('05)475)
 - "low mass enhancement" : anomaly at the lower region of ρ/ω
 - in A+A, not in p+A
 - relative abundance is determined by their statistical model
 - Both "broadening" and "dropping" explain the data




- NA60 : (PRL96(06)162302)
 - $\rho \rightarrow \mu^{+}\mu^{-}:$
 - width broadening of ρ
 - state 'BR scaling (mass dropping) is ruled out'

Dilepton spectra in Heavy Ion Collision

- PHENIX : (arXiv:0706.3034v1,0912.0244v1)
 - 200GeV /u Au+Au $\rightarrow e^+e^-$
 - enhancement below ω
 - cannot reproduced by any model at low pT
 - at high pT, thermal photons reproduce



Dilepton spectra in p+A : KEK-PS E325

 $12 GeV \ p + A(C,Cu) \rightarrow \rho/\omega/\varphi \ + X \ (\ \rho/\omega/\varphi \rightarrow e^+e^- \ , \ \varphi \rightarrow K^+K^- \)$

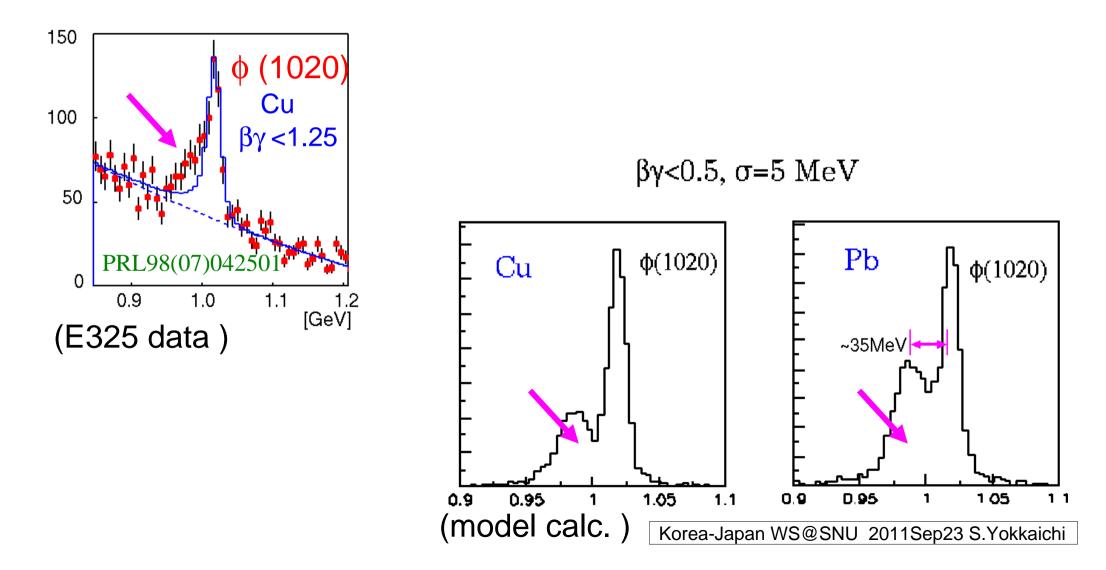
- In the e⁺e⁻ channel, below the ω and φ, statistically significant excesses over the known hadronic sources including experimental effects
- The excesses are consistent with "mass dropping" based on the chiral restoration in the normal nuclear matter predicted by Hatsuda and Lee

Status of dilepton measurements

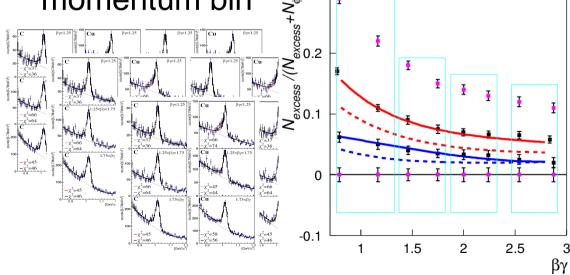
- low mass enhancement is found in the dilepton spectra in A+A (in comparison with p+p,p+A) from Bevalac to RHIC energy
 - DLS (Bevalac), Helios/3, CERES(SPS).... bad S/N ratio
 - NA60(SPS) : width broadening of ρ meson by hadronic calculation
 - PHENIX(RHIC) : not explained theoretically yet
- lower energy elementary reactions: finite density, better S/N
 - modification of resonance is found in dilepton spectra
 - E325(KEK-PS) : consistent w/ mass dropping in partial chiral restoration
 - CLAS-g7(JLab) : consistent w/ hadronic calc. (collisional broadening of ρ)
- Modification is observed, but discussion on the physics underlying the observed modification is not converged
 - hadronic many-body effect? chiral symmetry restoration?
 - interpretation model dependence ?
 - Assumption of the space-time evolution of the (T, ρ) of matter in the real world

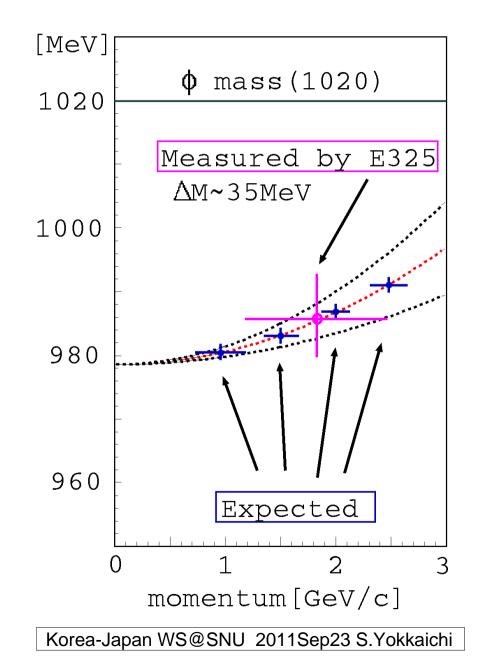
Next step

- In the invariant-mass approach
 - $\phi \to e^+ e^-~$: less uncertain than the ρ/ω case
 - ρ 's broad and complicated shape, $\rho-\omega$ interference, ρ/ω ratio, etc.
 - systematic study of the mass modification
 - matter-size dependence: larger/smaller nuclei, impact parameter
 - momentum dependence : never measured
 - check the interpretation models
- Mesic nuclei approach
 - the deeply bound pionic atom : success to deduce the chiral condensate in nuclei
 - static system : no space-time evolution
 - measure the decay of meson if possible : only inside-decay
 - another physics?
 - high density(K), chiral partner of N (η)


J-PARC E16 experiment

- Main goal : collect ~1-2 x $10^5 \phi \rightarrow e^+e^-$ for each target in 5 weeks using 30 (or 50) GeV p +A (C/CH₂/Cu/Pb) reactions
 - statistics : ~100 times as large as E325
 - systematic study of the modification
 - velocity & nuclear size (0~10 fm) dependence
 - proton/Pb targets / collision geometry (impact parameter)⁶
 - momentum dependence (dispersion relation)
 - mass resolution : $\sigma < 10 \text{ MeV}$ (E325 : 10.7 MeV for ϕ)
 - double peak structure can be seen w/ $\beta\gamma$ < 0.5, σ ~5-6 MeV
 - $\rho,\,\omega,\,J/\psi$'s also can be measured at the same time
 - Confirm the modification observed in E325, and provide new information about the mass of hadrons


E16 : mass resolution requirement

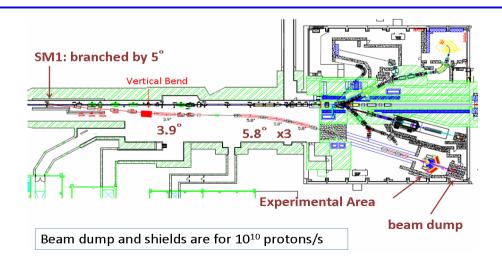

- mass resolution should be kept less than ~10MeV
- Very ideal case : very slow mesons w/ best mass resolution:

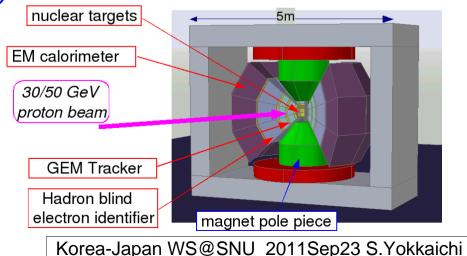
E16 : dispersion relation (mass VS momentum)

- prediction for φ by S.H.Lee(p<1GeV/c)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter k₁(p), to all nuclear targets in each momentum bin 2^{0.3}

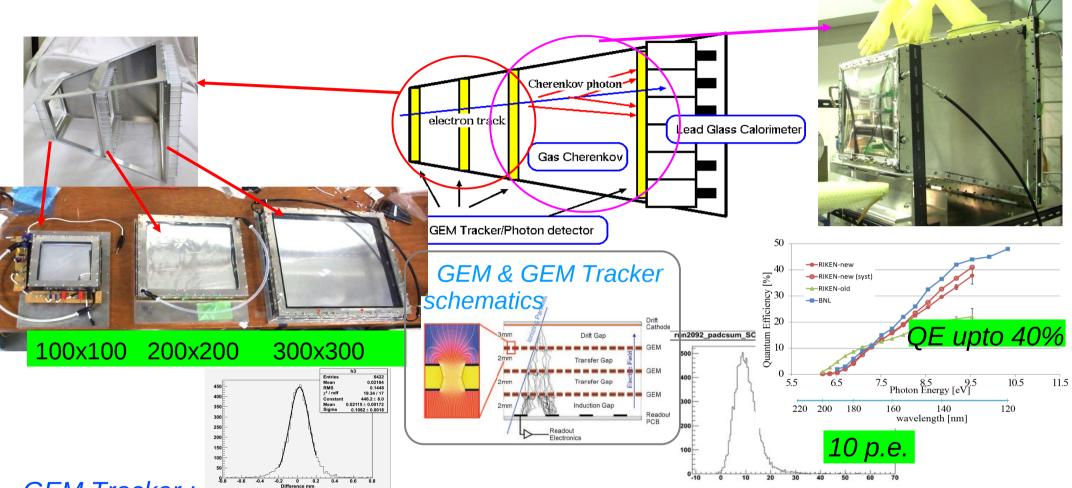
E16 : schedule

•2007: stage1(scientific) approval


•2008-2010 : development of prototype detectors


- GEM Tracker and HBD
- w/ Grant-in-Aid (2007-8, 2009-13 (\$2.4M))
- •2011 : additional parts of the spectrometer magnet , R/O circuit development
 - budget of beamline construction (2012-14) is requested by KEK
- •2013 : Goal of the spectrometer construction

Collaboration	
RIKEN	S.Yokkaichi, H. En'yo, F. Sakuma, K. Aoki,
	J. Kanaya, Y.Aramaki, T.Takahashi
KEK	K.Ozawa, M. Naruki, R. Muto, S. Sawada,
	M. Sekimoto
U-Tokyo	Y.S. Watanabe, Y.Komatsu, S.Masumoto,
	A.Takagi, K.Kanno, W.Nakai
CNS, U-Tokyo	
	K. Shigaki
JASRI	A.Kiyomichi
o, torta	



13

E16: Beam test results of prototype detectors

GEM Tracker :

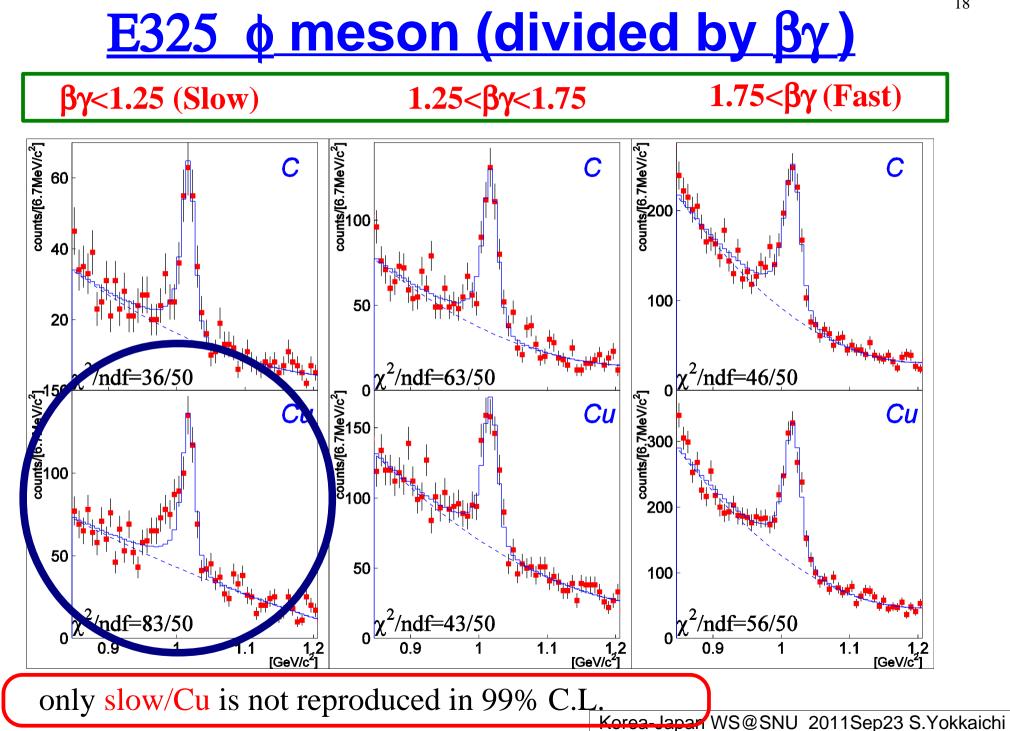
Required position resolution (~100µm) is achieved with largesize PI-GEM(300mm x 300mm)

Hadron-Blind Gas Cherenkov detector

UV Cherenkov photons (10 photoelectrons) are detected for an electron track with CsI-evaporated LCP-GEM and CF_4 gas

Summary

- Investigation of the hadron spectral modification in nuclear matter
 - is a study of the origin of mass (spontaneous breaking of the chiral symmetry, and its possible restoration)
 - i.e., a study of the nature of QCD vacuum
- Spectral modification of hadrons is observed in hot / dense nuclear matter through the dilepton invariant mass spectra
 - but discussion is not converged : chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam.
 - confirm the observation by KEK-PS E325 and provide more systematic information of the mass modification
 - Goal of spectrometer construction : the end of 2013


- 1993 proposed
- 1994 R&D start
- 1996 construction start
- '97 data taking start
- '98 first ee data
 - PRL86(01)5019 ρ/ω (ee)
- 99,00,01,02....
 - x100 statistics
 - PRL96(06)092301 ρ/ω (ee)
 - PRC74(06)025201 α (ee)

 - PRL98(07)152302 φ (KK),α
- '02 completed
- spectrometer paper
 - NIM A457(01)581
 - NIM A516(04)390

History of E325

E325 spectrometer located at KEK-PS EP1-B primary beam line

