$B_s^0 \rightarrow CP$ eigenstate decays

5th International Workshop at High-1

(2011/02/09)

Jin Li SNU

Results and outlook in the Belle experiment.Not comprehensive.

Normalized D_s momentum

Alternative method for f_s measurement

Model independent way: calculate the fraction of same sign leptons.

Sia & Stone, PRD 74, 031501 (2006)

Probability for two B decays to same or opposite flavor:

 $P_{\pm\pm} = P(BB) + P(\overline{BB})$ $P_{\pm\mp} = P(B\overline{B}) + P(\overline{B}B)$

For B⁰, mixing parameter $x=\Delta m/\Gamma=0.774 \pm 0.008$

C=-1 state:

$P^{C}_{\pm\pm} = \chi =$	$\frac{x^2}{2(1+x^2)} = 18.7\%$
$P_{\pm\mp}^{C_{-}} = 1 - \chi =$	$=\frac{2+x^2}{2(1+x^2)}=81.3\%$

C=+1 state:

$$P_{\pm\pm}^{C_{+}} = \frac{x^{2}(3+x^{2})}{2(1+x^{2})^{2}} = 42.2\%$$

$$P_{\pm\mp}^{C_{+}} = \frac{2+x^{2}+x^{4}}{2(1+x^{2})^{2}} = 57.8\%$$

Same story for B_{s}^{0} , except that $x = 21.6 \pm 0.5$, so in all cases:

$$P_{\pm(\pm,\mp)} \simeq 1/2$$

r I	(5S)) decay	mode	with a	$B^0 \overline{B}{}^0$	pair	C-parity	of the	$R\bar{R}$	nair
- 1	00	Juccay	mode	with a	D D	pan	C-pairty	or the	DD	pan

$\frac{1}{2(1+\pi^2)} = 81.3\%$	$B^{0*}B^{0*}$	-1
$2(1+x^2)$	$B^{0*}\bar{B^{0}}$	+1
	$B^0 ar{B^0}$	-1
	$B^{0*}\bar{B}^{0*}\pi^{0}$	-1
$+x^{2}$) 40.007	$B^{0*}\bar{B^0}\pi^0$	+1
$\frac{1}{(x^2)^2} = 42.2\%$	$B^0 ar{B^0} \pi^0$	-1
(x-)-	$B^0 ar{B^0} \pi^0 \pi^0$	-1
$r^2 \perp r^4$	$B^0 \bar{B^0} \pi^+ \pi^-$	$(-1)^{l_{\pi\pi}+1} \approx -1$
$\frac{7}{100} + \frac{3}{100} = 57.8\%$	$B^0 ar{B^0} \gamma_{ m ISR}$	-1
$(+x^{2})^{2}$	•	

B_s⁰ reconstruction

Full reconstruction of the B_s^0 . Observables: $(E_b^* = \sqrt{s}/2)$

- Beam-constrained mass: $M_{\rm bc} = \sqrt{E_{\rm b}^{*2} p_{B_s^0}^{*2}}$
- Energy difference: $\Delta E = E_{B_s^0}^* E_b^*$
- 3 production modes: $\Upsilon(5S) \to B_s^* \bar{B}_s^*, \ \Upsilon(5S) \to B_s^* \bar{B}_s^0 \text{ and } \Upsilon(5S) \to B_s^0 \bar{B}_s^0.$
- ▶ $B_s^* \to B_s^0 \gamma$ cannot be reconstructed (γ too soft)
- ► In the $(M_{\rm bc}, \Delta E)$ plane, B_s^0 candidates are in 3 signal regions

CP eigenstate in B_s⁰ decay

In general overview, Bs decays to CP eigenstate can be used for searching for New Physics and test the CKM source of CP violation.

- Dunietz, Fleischer & Nierste, Phys. Rev. D 63, 114015 (2001)

In particular for $B_s^0 \rightarrow CP$ eigenstates:

• $B_{s}^{0} \rightarrow K^{+} K^{-}$:

•Branching Fraction, CP asymmetry sensitive to New Physics.

- London, & Matias, PRD70, 031502 (2004)

•Can measure $\phi_3(\gamma)$ via U-spin and $B^0 \rightarrow \pi^+\pi^-$.

- Fleischer, Phys. Lett. B 459, 306 (1999)

•CP violation in b \rightarrow ccs transition is very small in SM, while NP may contribute.

- Modes: $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}, B_s^0 \rightarrow J/\psi(\phi, f_0, \eta(')), \dots$
- •BF($B_s^0 \rightarrow D_s^{(*)+}D_s^{(*)-}$) also related to $\Delta \Gamma_{CP}$ in Bs mixing

- Aleksan et al., Phys. Lett. B 316, 567 (1993)

 $2BF(B_s^0 \to D_s^{(*)+} D_s^{(*)-}) \simeq \Delta \Gamma_{\rm CP} \, / \, \Gamma$

Establishing those modes is the first step.

Cross feed matrix used. (Cross feed due to missing or plus γ in Ds^{*} \rightarrow Ds γ).

$B_{c} \rightarrow J/\psi f_{0}(980)$

- Extrapolation from $B_{c} \rightarrow J/\psi \Phi$
 - $\frac{\mathcal{B}(B_s^0 \to J/\psi f_0)\mathcal{B}(f_0 \to \pi^+\pi^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi)\mathcal{B}(\phi \to \pi^+\pi^-)} \approx 0.2 0.3$ $= 0.42 \pm 0.11$

Stone et al., PRD79, 074024 (2009)

CLEO D_s+ -> f_0e^+v , PRD80,052009 (2009)

CDF: B(B_s \rightarrow J/ ψ Φ ; Φ \rightarrow K⁺K⁻)= (6.4±2.0)×10⁻⁴ \Rightarrow B(B_s \rightarrow J/ ψ f₀ ; f₀ \rightarrow $\pi^{+}\pi^{-}$) = (1.3-2.7) \times 10⁻⁴

 Theory (QCD @ LO) $B(B_{s} \rightarrow J/\psi f_{0}; f_{0} \rightarrow \pi^{+}\pi^{-}) = (3.4 \pm 2.4) \times 10^{-4} \cdot (50^{+7}_{-9})\%$ BES, PRD80, QCD(LO),

PRD81,074001 (2010)

052009 (2009)

$= (1.6 \pm 0.3) \times 10^{-4}$

Summary and Other Bs0 CP decays

Belle has analyzed the following Bs0 CP eigenstate decays: $B_s^0 \rightarrow K^+ K^-, D_s^{(*)+} D_s^{(*)-}, B_s^0 \rightarrow J/\psi(\phi, f_0, \eta(')), ...$

Other CP decays to be studied:

```
• B_s \rightarrow D_{CP}K_s(K^{*0}), D_{CP}\eta. D_{CP}=D^0 decay to CP eigenstates.

Pure CP eigenstate.

(C.F.: BF(B^0 \rightarrow D^0\pi^0) = (2.61\pm0.24)\times10^{-4})
```

•Rare decay: $B_s \rightarrow \eta(') \eta('), \phi \phi$.

Also, we need tagging of all CP-eigenstate modes to do a time-dependent study to extract Bs0 mixing parameter $\Delta\Gamma$.

BACKUP

B_s Time distribution (1)

Master Equation for untagged quantum correlated B_s decay time difference Δt

$$\Gamma(B(t) \to f) = \frac{\Gamma(B \to f)}{2} e^{-|\Delta t|\Gamma} \left\{ (1 + |\lambda|^2) \cosh \frac{\Delta \Gamma \Delta t}{2} + 2\operatorname{Re}(\lambda) \sinh \frac{\Delta \Gamma \Delta t}{2} \right\}$$

$$\lambda = \frac{q\overline{A}_f}{pA_f} = \eta_f e^{-i\phi} \qquad \phi = -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

$$\left|\left\langle f_{CP+} \mid B_{s}^{0} \right\rangle\right|^{2} = \begin{cases} e^{-\left(\Gamma + \frac{\Delta\Gamma\cos\phi}{2}\right)\Delta t} \approx e^{-\Gamma_{H}\Delta t} & \Delta t < 0\\ e^{-\left(\Gamma - \frac{\Delta\Gamma\cos\phi}{2}\right)\Delta t} \approx e^{-\Gamma_{L}\Delta t} & \Delta t > 0 \end{cases}$$

B_s Time distribution (2)

Toy MC study

$$\left|\left\langle f_{CP+} \mid B_{s}^{0} \right\rangle\right|^{2} = \begin{cases} e^{-\Gamma_{H}\Delta t} & \Delta t < 0\\ e^{-\Gamma_{L}\Delta t} & \Delta t > 0 \end{cases}$$

~ 300 fb⁻¹ Υ (5S) data, using pure CP J/ ψ (η , η ', f_0),DsDs (40 events in 23.6 fb⁻¹)

		$N_{\rm sig}=500$	$N_{ m sig} = 1000$	$N_{ m sig}=2000$	$N_{ m sig} = 5000$	
S/R = 0		7.45 ± 0.17	5.25 ± 0.12	$3.80\ \pm 0.09$	2.42 ± 0.05	
S/D = 0.4	EU.	(7.42 ± 0.17)	(5.21 ± 0.12)	(3.69 ± 0.08)	(2.29 ± 0.05)	
G/D 1 (6.88 ± 0.15	4.91 ± 0.11	3.38 ± 0.08	2.18 ± 0.05	
S/D = 1.0	'	(6.89 ± 0.15)	(4.66 ± 0.10)	(3.53 ± 0.08)	(2.17 ± 0.05)	
S/B = 2.0		6.62 ± 0.15	4.70 ± 0.11	$3.24\ \pm 0.07$	2.09 ± 0.05	
	'	(6.63 ± 0.15)	(4.62 ± 0.10)	(3.30 ± 0.07)	(2.04 ± 0.05)	

 $\delta(\Delta\Gamma/\Gamma) \times 100$

arXiv:0912.1434 (2009); 23.6 fb⁻¹

Strategy to fit

In Mbc signal region:

- We choose a reduced ΔE region (avoid B^0, B^+ band) :
- **-0.1** GeV< ΔE<0.20 GeV.
 - •To get rid of correlations, and reduce yields in $B_s \rightarrow J/\psi \phi$, $J/\psi \eta$.
 - •To reduce correlations in $B_s \rightarrow J/\psi \eta'$.
 - •To remove J/ ψ K_s, J/ ψ p⁰,J/ ψ π⁺π⁻ BG.

Fit region $-0.1 \text{ GeV} < \Delta E < 0.20 \text{ GeV}, \text{ m}(\pi^+\pi^-) < 1.8 \text{ GeV},$

- •The final background categories in fitting:
- •Bs→J/ψη'.
- •Non-resonant Bs \rightarrow J/ $\psi \pi^+ \pi^-$.
- •J/ψK⁺, J/ψπ⁺.
- Other J/ ψ X BG (does not peak in ΔE and m($\pi^+\pi^-$), no correlation)
- •Continuum BG.