Development of the TOF detector for the GBAR experiment

Ahram Lee^{1*} J.W. Hwang¹, B.H. Kim¹, D.W.Won¹, S.K.Kim¹, K.S.Park², Jason Lee², GBAR Collaboration³

1서울대학교 물리천문학부, 2기초과학연구원, 3CERN

2016-10-21

2016 Fall KPS (Gwangju)

- 1. Introduction
- 2. Prototype TOF detector
 - a. Set-up
 - b. Analysis methods
 - c. Results
- 3. Summary

GBAR : Gravitational Behavior of Antihydrogen at Rest to measure the gravity of antimatter and test Weak Equivalence Principle

GBAR : Gravitational Behavior of Antihydrogen at Rest to measure the gravity of antimatter and test Weak Equivalence Principle

To calculate the gravitational acceleration, g, need to measure **time** and **position**. How long it takes where the annihilation is happened.

GBAR : Gravitational Behavior of Antihydrogen at Rest TOF detector : Time-of-Flight detector

An array of plastic scintillator bars plastic : $10 \times 5 \times 170 \ cm^3$ four walls – top, bottom, left, right covered by about 40 bars

GBAR : Gravitational Behavior of Antihydrogen at Rest TOF detector : Time-of-Flight detector

To distinguish top & bottom and cosmic ray signal, the time resolution(σ) should be smaller than 0.2 [ns]

2016 Fall KPS (Gwangju)

- 2. Prototype TOF detector
 - a. Set-up
 - b. Analysis methods
 - c. Results

Without any source, Cosmic rays go through scintillators and make signals.

Triggers are situated at center(0cm), 20cm, 40cm, 60cm, 77cm from center.

Only takes coincidence data of 4 PMTs, then we can measure the time resolutions and find time – position conversion factor.

2 plastic bars + 2 PWO triggers sustained by aluminum profiles and clamps

Cosmic ray data from PMTs, taken by FADC

FADC (NOTICE, 500-IBS)

- \checkmark 2V /4000 ch = about 0.5mV / ch
- ✓ 500 mHz = 2 ns / event
- ✓ USB 3.0 Hub

MTCB - sync board

- \checkmark to synchronize two modules in FADC
- ✓ USB 3.0 Hub

HV supplier(CAEN, SY1527LC)

- \checkmark 12 ch * 4 boards
- ✓ 4kV 3mA
- ✓ power requirement : ~ 3,4000W

Top plastic scintillator – ch 0,1 Bottom plastic scintillator – ch 2,3

Trigger - ch4(up), ch5(down)

- 1) How to find the rising time, t_r
 - \rightarrow Inverse interpolation is used to find t_r

- 1. Find the voltage(height) at the peak
- 2. Find t_0 , which is a time of the nearest point from the line indicating 10% peak

- 1) How to find the rising time, t_r
 - \rightarrow Inverse interpolation is used to find t_r

- 1. Find the voltage(height) at the peak
- 2. Find t_0 , which is a time of the nearest point from the line indicating 10% peak
- 3. Select 3 points before t_0 , and after t_0

- 1) How to find the rising time, t_r
 - $\rightarrow\,$ Inverse interpolation is used to find t_r

- 1. Find the voltage(height) at the peak
- 2. Find t_0 , which is a time of the nearest point from the line indicating 10% peak
- 3. Select 3 points before t_0 , and after t_0
- 4. With 7 points near t_0 , use inverse interpolation and find t_r , where $f(t_r) = 0.1 * (peak height)$

Computational Methods in Physics and Engineering, S.M.Wong

Using $t_{r,0} \sim t_{r,3}$,

1.
$$dt_b = t_{r,0} - t_{r,1}, dt_t = t_{r,2} - t_{r,3}$$

2. dtmean = (tmean_b) - (tmean_t)
tmean_b =
$$\frac{t_{r,0}+t_{r,1}}{2}$$

tmean_t = $\frac{t_{r,2}+t_{r,3}}{2}$

3. dtfast = (tfast_b) - (tfast_t)
tfast_b = faster time btw
$$t_{r,0} \sim t_{r,1}$$

tfast_t = faster time btw $t_{r,2} \sim t_{r,3}$

2) How to define the time difference

Draw the histogram of 1~3, and fit with Gaussian distribution. Then can find mean, sigma values.

<u>Prototype TOF detector</u> : results

(1) time resolution (at center)

	mean [ns]	sigma [ns]
dt_b	15.66	0.1434
dt_t	-1.794	0.1551
dtmean	7.718	0.1119
dtfast	0.7901	0.1335

It varies depending on what methods we used to obtain time difference. But, all of them is about 110~150ps.

 \rightarrow Enough to distinguish top & bottom and cosmic ray annihilation!

Prototype TOF detector : results

(2) time – position conversion factor (bottom scintillator)

Prototype TOF detector : results

(2) time – position conversion factor (top scintillator)

<u>Prototype TOF detector</u> : results

(3) Energy calibration

- 1. Introduction
- 2. Prototype TOF detector
 - a. Set-up
 - b. Analysis methods
 - c. Results
- 3. Summary

Summary

- the GBAR experiment is going to measure the gravity of antihydrogen.
- One of the most important steps in GBAR is the measurement of Time of Flight(TOF). As a TOF detector, we designed an array of plastic scintillator bars.
- According to simulation results, the resolution higher than 0.2ns is required, to distinguish if the signal came from top, bottom chamber or cosmic rays.
- We have developed a prototype TOF detector, with FADC DAQ system.
 By testing the prototype with cosmic ray signal, we confirmed that the resolution is much better than 0.2ns.
- Also, we calculated time position conversion factor and calibrated its energy scale.