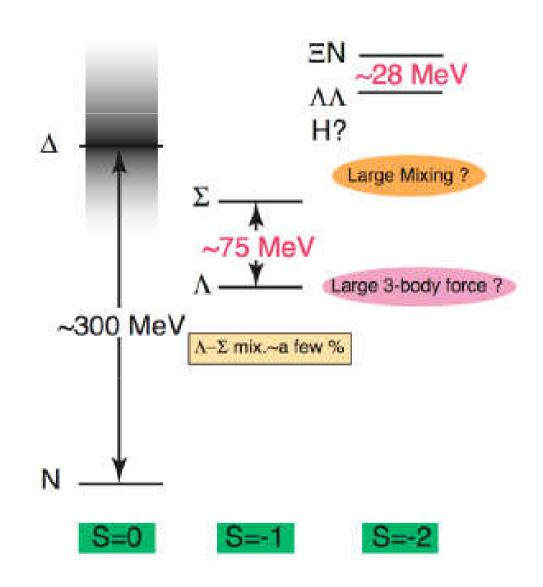

Challenges on doubly strange systems at J-PARC

Yongpyong Ski Resort Feb. 22, 2010


Kiyoshi Tanida (Seoul National University)

Hyper-nuclear chart

S=-2 systems

- A doorway to the multistrangeness system
 - YY interaction appears for the first time
- Very dynamic system?
 - Large baryon mixing?
 Inversely proportional to mass difference.
 - H dibaryon as a mixed state of $\Lambda\Lambda$ - Ξ N- $\Sigma\Sigma$?
- Little is known so far
 → Main motivation of
 the J-PARC

B_8B_8 systems classified in the SU_3 states with (λ, μ)

S	B ₈ B ₈ (I)	¹ E, ³ O (P=symmetric)	³ E, ¹ O (P=unsymmetric)
0	NN(0)	—	(03)
0	NN(1)	(22)	—
	ΛΝ	$\frac{1}{\sqrt{10}}$ [(11) _s +3(22)]	$\frac{1}{\sqrt{2}}$ [-(11) _a +(03)]
-1	ΣN(1/2)	$\frac{1}{\sqrt{10}}$ [3(11) _s -(22)]	$\frac{1}{\sqrt{2}}$ [(11) _a +(03)]
	ΣN(3/2)	(22)	(30)
	ΛΛ	$\frac{1}{\sqrt{5}}(11)_{\rm s}$ + $\frac{9}{2\sqrt{30}}(22)$ + $\frac{1}{2\sqrt{2}}$ (00)	—
	ΞN(0)	$\frac{1}{\sqrt{5}}(11)_{\rm S} - \sqrt{\frac{3}{10}}(22) + \frac{1}{\sqrt{2}}(00)$	(11) _a
	ΞN(1)	$\sqrt{\frac{3}{5}} (\frac{11}{5})_{\rm s} + \sqrt{\frac{2}{5}} (22)$	$\frac{1}{\sqrt{3}}[-(11)_{a}+(30)+(03)]$
-2	ΣΛ	$-\sqrt{\frac{2}{5}(11)}$ + $\sqrt{\frac{3}{5}}$ (22)	$\frac{1}{\sqrt{2}}$ [(30)-(03)]
	ΣΣ(0)	$\sqrt{\frac{3}{5}(11)_{\rm S}} - \frac{1}{2\sqrt{10}}(22) - \sqrt{\frac{3}{8}}(00)$	—
	ΣΣ(1)	—	$\frac{1}{\sqrt{6}}[2(11)_{a}+(30)+(03)]$
	ΣΣ(2)	(22)	—
	ΞΛ	¹ √ ¹⁰ [(11) _s +3(22)]	$\frac{1}{\sqrt{2}}$ [-(11) _a +(30)]
-3	$\Xi\Sigma(1/2)$	$\frac{1}{\sqrt{10}}$ [3(11) _s -(22)]	$\frac{1}{\sqrt{2}}$ [(11) _a +(30)]
	$\Xi\Sigma(3/2)$	(22)	(03)
Λ	三三(0)		(30)
-4	王王(1)	(22)	—

S=-2 system

J-PARC PAC Approval summary -----

		(Co-) Spokespersons	Affiliation(*)	Title of the experiment	Approval status	Slow Dav17	Davi Priority
201		V. Sunachev		Proposal on measurements of the spin rotation parameters A and R at the J-PARC in the resonance region of $\pi\text{-N}$ elastic scattering	Rejected	36	
202	Lol	P. Aslanyan	Laboratory for High Energy, JINR	Study of Exotic Multiquark States with A-Hyperons and K $^{0}_{\ S}$ Meson Systems at JPARC	•		
03				Measurement of X rays from B ⁻ Atom	Stage 1		E EO3 –
104			U.of Illinois at	Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron	Deferred		
05		T. Nagae	KEK	Spectroscopic Study of B-Hypernucleus, ¹² "Be, via the ¹² C(K, K ⁺) Reaction	Stage 2	2011	🗉 E05 🗆
06		J. Imazato	KEK	Measurement of T-violating Transverse Muon Polarization in K * -> * µ v Decays	Stage 1	a de caracteria de la cara	
P07			Kyoto U., Gifu U., Tohoku U.	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 1		E07
208		A. Krutenkova	ITEP	Pion double charge exchange on oxygen at J-PARC	*		÷ -
09	Lol	T. Nakano	RCNP, Osaka U	Study of Exctic Hadrons with S=+1 and Rare Decay K $^* \to \pi^* v$ v-bar with Low-momentum Kaon Beam at J-PARC	*	36	6
10		A. Sakaguchi	Osaka U	Study on A-Hypernuclei with the Charge-Exchange Reactions	Deferred		
11		K.Nishikawa	KEK	Tokai-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experimental Proposal	Stage 2		
P12	Lol	S. Choi	Secul National University	Study of Parton Distribution Function of Mesons via Drell-Yan Process at J-PARC at High-p beamline	*		
13		T. Tamura	Tohoku U.	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Pays.	2
14				Proposal for $K_L \rightarrow \pi^0 v v$ -bar Experiment at J-PARC	Stage 1	10004141	96 L
45		M. Iwasaki, T. Nagae	RIKEN, KEK	A Search for deeply-bound kaonic nuclear states by in-flight 3He(K-, n) reaction	Stage 1	Pays	
P16		S. Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in OCD	Deferred	1	Û
17		R. Hayano, H. Outa	U. Tokyo, RIKEN	Precision spectroscopy of Kaonic ³ He 3d->2p X-rays	Stage 1	Dayı	1
P18		H. Bhang, H. Outa, H. Park		Output ideal Management of the West Descent of 12 Count at a standard back	Deferred		
P19		M. Naruki	RIKEN	High-resolution Search for ⊜ Pentaquark in πp → KX Reactions	Stage1	Days	
P20	Lol	Y. Kuno	Osaka U	An Experimental Search for μ^e^- Conversion at Sensitivity of 10 ⁻¹⁸ with a High Intense Muon Source, PRISM	•		

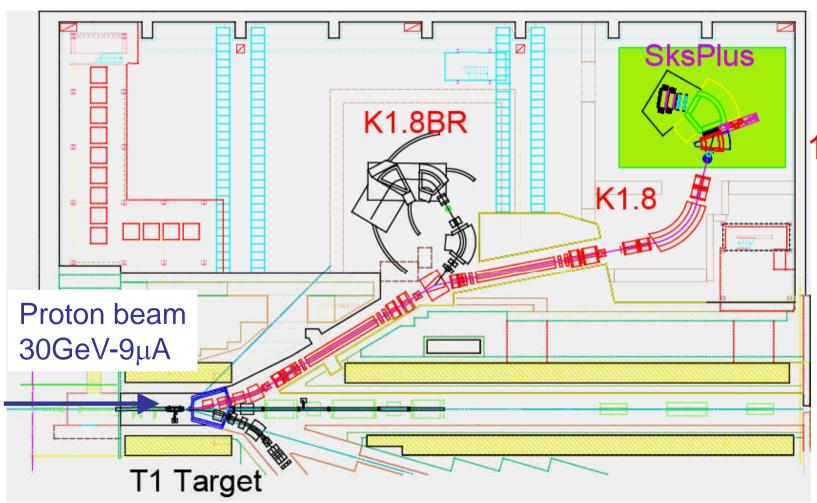
Letter of Intent

Experiment at the fast extraction beam

Experiment at the third extraction beam

(*) No presentation this time (*) Affiliation of the spokespersons

S=–2 system


- J-PARC PAC Approval summary -----

E03: Measurement of X rays from Ξ^- atom Spokesperson – K. Tanida (Seoul) E05: Spectroscopic study of Ξ -hypernucleus, ${}^{12}_{\Xi}Be$, via the ${}^{12}C(K^-,K^+)$ reaction (Day 1 – 1st priority) Spokesperson – T. Nagae (Kyoto) E07: Systematic study of double strangeness system with an emulsion-counter hybrid method Spokespersons – K. Imai (Kyoto) K. Nakazawa (Gifu) H. Tamura (Tohoku) ffiliation of the spokespersons

E05 E-hypernuclei AXiS

Missing mass spectroscopy of ¹²C(K⁻,K⁺)X

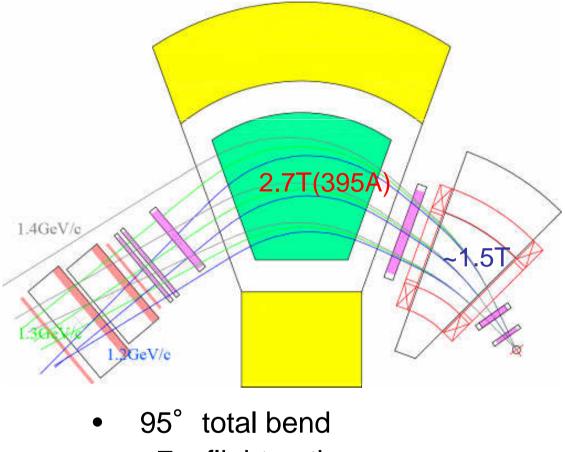
 \rightarrow ¹²_{Ξ}Be, ¹²_{$\Lambda\Lambda$}Be

1.8 GeV/c K⁻ beam

high intensity 1.4x10⁶ K⁻ /spill (Phase-1)

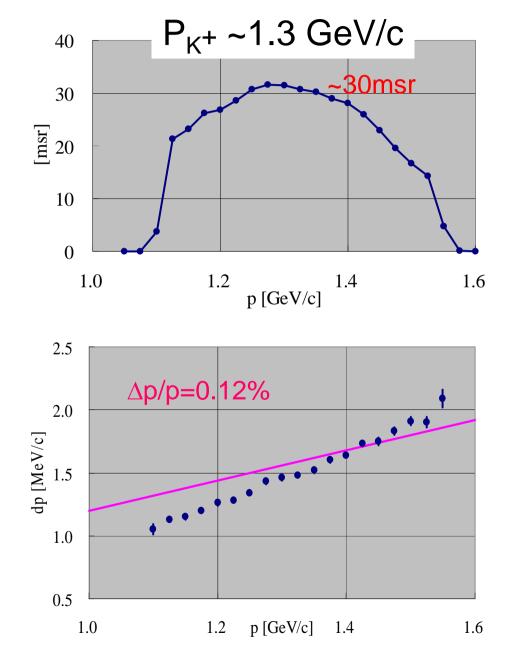
high purity $K^{-}/\pi^{-} \sim 6.9$

Importance of Ξ systems

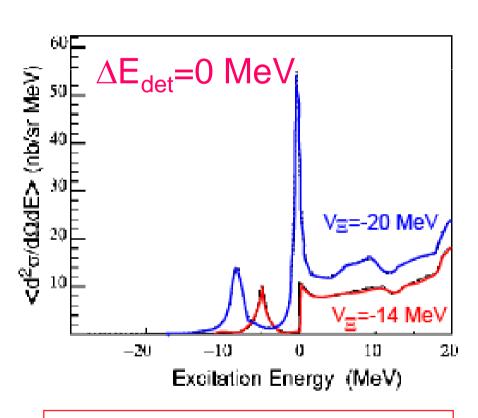

- Valuable information on ΞN (effective) interaction
 - e.g., How strong $\Xi N \rightarrow \Lambda \Lambda$ (and thus $\Xi N \cdot \Lambda \Lambda$ mixing) is?
 - Relevant to the existence of H dibaryon
 - ΞN component in $\Lambda\Lambda$ -hypernuclei
 - Exchange interaction is prohibited in one-meson exchange models
- How about A dependence?
- Impact on neutron stars
 - Does Ξ⁻ play significant role in neutron stars because of its negative charge?
 - Σ^- was supposed to be important, but its interaction with neutron matter is found to be strongly repulsive.

ΞN interaction model and ΞA optical potential

Model	т	¹ S ₀	${}^{3}S_{1}$	¹ P ₁	³ P ₀	³ P ₁	³ P ₂	U	Γ_{Ξ}
NHC-D	0	-2.6	0.1	-2.1	-0.2	-0.7	-1.9		
	1	-3.2	-2.3	-3.0	-0.0	-3.1	-6.3	-25.2	0.9
Ehime	0	-0.9	-0.5	-1.0	0.3	-2.4	-0.7		
	1	-1.3	-8.6	-0.8	-0.4	-1.7	-4.2	-22.3	0.5
ESCO4d*	0	6.3	-18.4	1.2	1.5	-1.3	-1.9		
	1	7.2	-1.7	-0.8	-0.5	-1.2	-2.8	-12.1	12.7

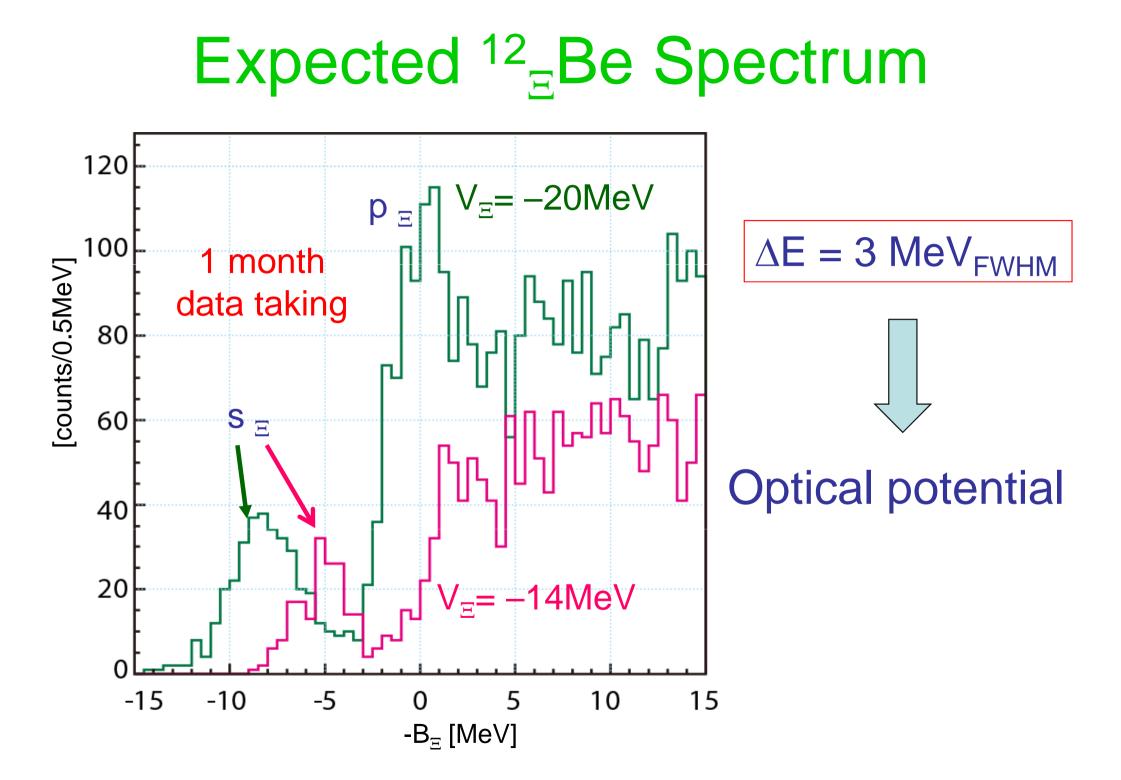

- One boson exchange (NHC-D, Ehime)
 - strong attraction in odd states \rightarrow strong A dependence
- ESC04d*
 - strong attraction in ${}^{3}S_{1}(T=0)$

SksPlus Spectrometer

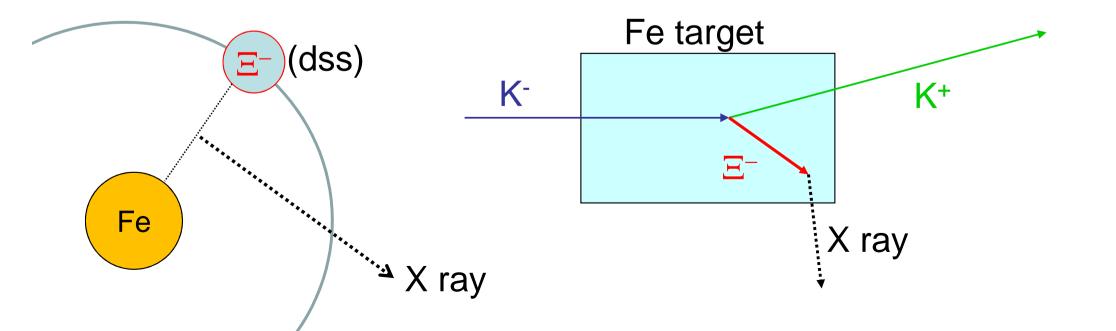


- ~7m flight path
- ∆x=0.3 mm (RMS)

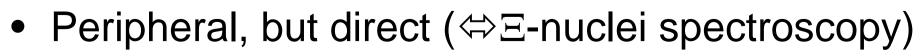
high resolution: $\Delta E \sim 3 \text{ MeV}$

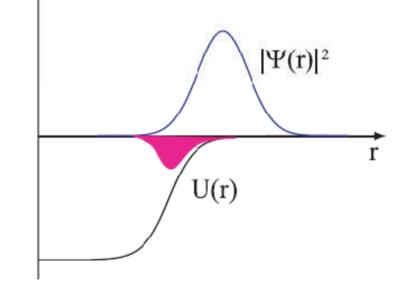

¹²C(K⁻,K⁺)¹²_ΞBe spectra calculated by W.S. potential

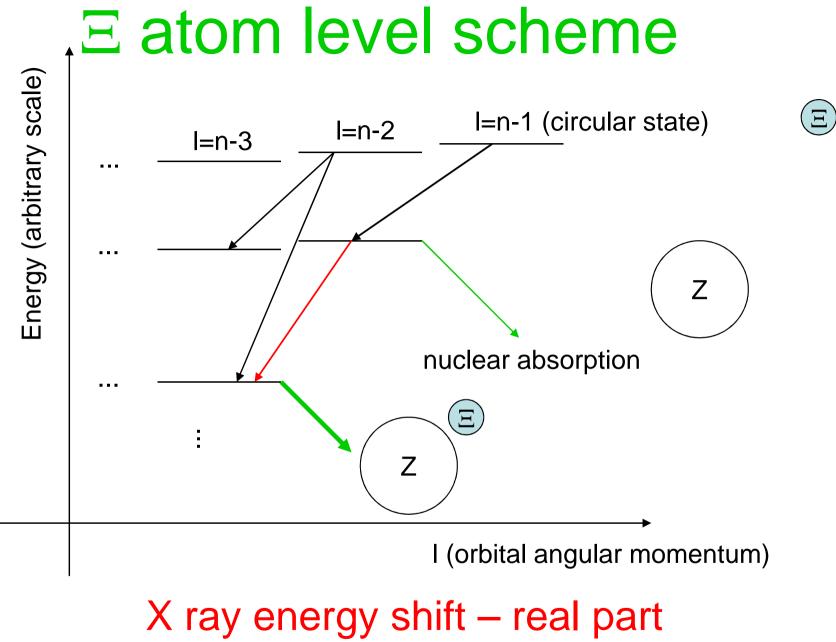
P.Khaustov, et al. Phys. Rev. C61(2000)054603


		V [≘] ₀ [MeV]				
states		-24	-20	-16	-12	
s-state	[nb/sr]					
$0p_{3/2} \rightarrow 0s_{1/2}$	1-	215	168	123	81	
p-states				[n	b/sr]	
0p _{3/2} →0p _{3/2}	0^+	29	20	—	_	
	2+	164	103	_	_	
0p _{3/2} →0p1 _{/2}	2+	152	93	_	_	
sum		345	216	_	_	

K.Ikeda, et al, Prog. Theor. Phys. 91 (1994) 747 ; Y.Yamamoto, et al, Prog. Theor. Phys. Suppl. 117 (1994) 281

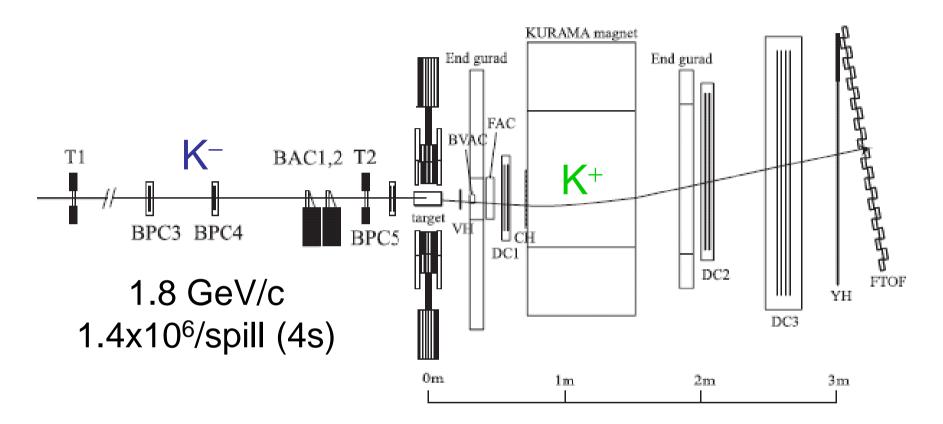

E03 experiment


- World first measurement of X rays from Ξ -atom – Gives direct information on the Ξ A optical potential
- Produce Ξ⁻ by the Fe(K⁻,K⁺) reaction, make it stop in the target, and measure X rays.
- Aiming at establishing the experimental method



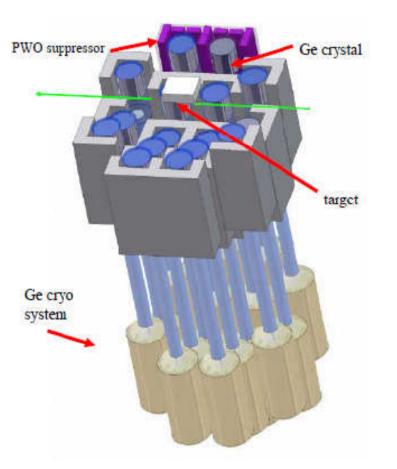
Principle of the experiment

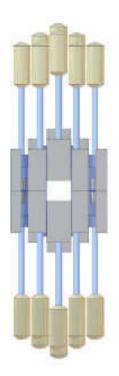
- Atomic state precisely calculable if there is no hadronic interaction
- 1st order perturbation $\Delta E = \int |\Psi_{\Xi}(r)|^2 U_{\Xi}(r) dr$
 - If we assume potential shape, we can accurately determine its depth with only one data
 - Shape information can be obtained with many data
 - Even if 1st order perturbation is not good, this is still the same.



Width, yield – imaginary part Successfully used for π^- , K⁻, p, and Σ⁻

Experimental setup



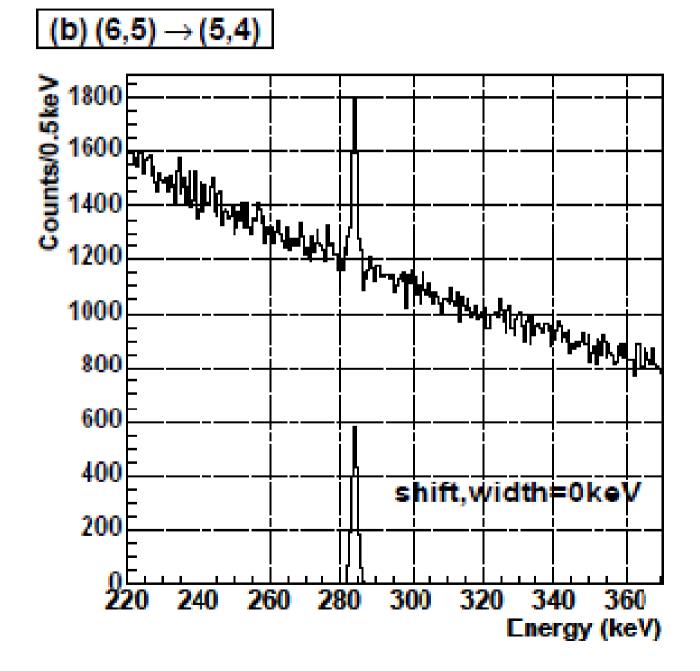

- Long used at KEK-PS K2 beamline (E373, E522, ...)
 - Minor modification is necessary to accommodate high rate.
- Large acceptance (~0.2 sr)

X-ray detector

• Hyperball-J

- 40 Ge detectors
- PWO anti-Compton
- Detection efficiency
 16% at 284 keV
- High-rate capability
 < 50% deadtime
- Calibration
 - In-beam, frequent
 - Accuracy ~ 0.05 keV
- Resolution
 - ~2 keV (FWHM)

Yield & sensitivity estimation

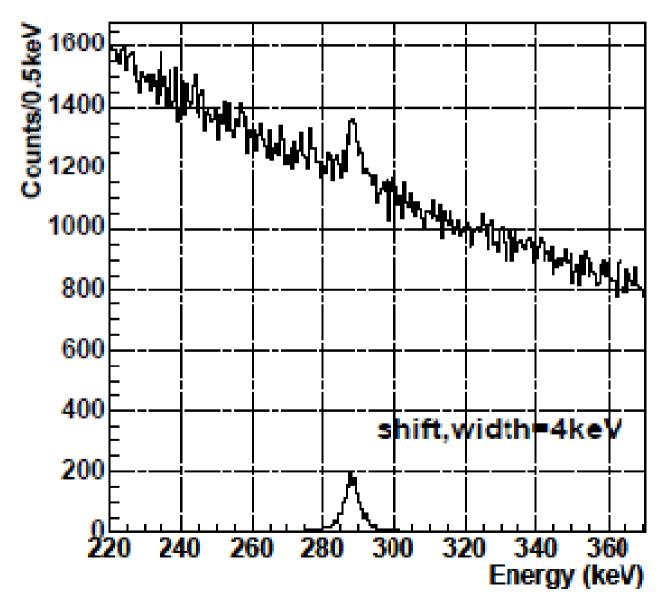

- Total number of K⁻: 1.0x10¹² for 800 hours.
- Yield of Ξ
 - production: 3.7×10^6
 - stopped: 7.5×10^{5}
- X-ray yield: 2500 for n=6 \rightarrow 5 transition
 - 7200 for n=7→6
- Expected sensitivity
 - Energy shift: ~0.05 keV (systematic dominant)

 \rightarrow Good for expected shift (~1 keV, 4.4 keV by Koike)

< 5% accuracy for optical potential depth

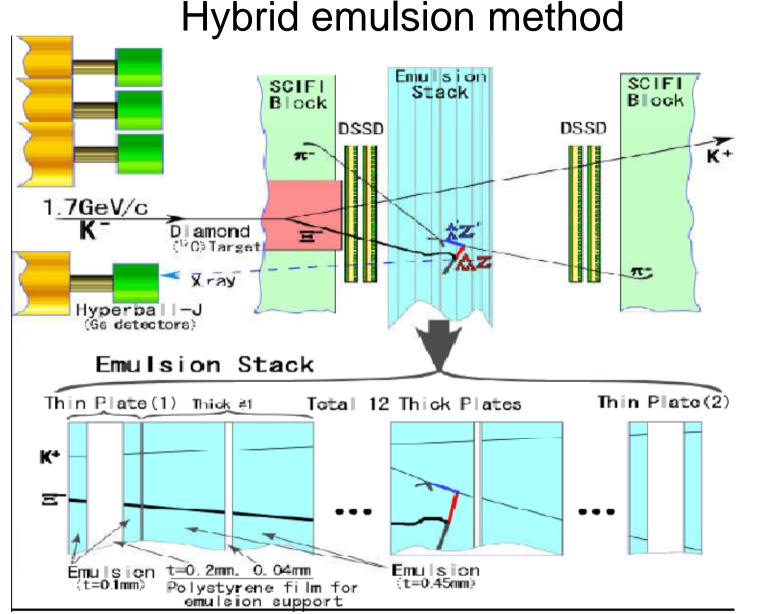
- Width: directly measurable down to ~ 1 keV
- X-ray yield gives additional (indirect) information on absorption potential.

Expected X-ray spectrum



$$n=6\rightarrow 5$$

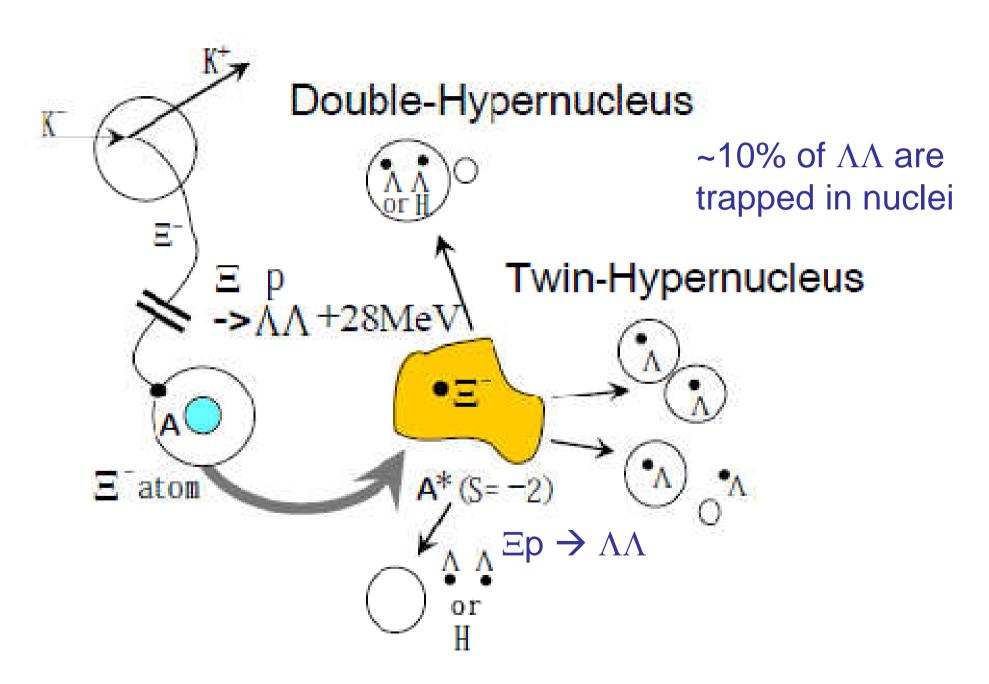
shift & width 0 keV


Expected X-ray spectrum(2)

(a) (6,5) → (5,4)

shift & width 4 keV

E07 ΛΛ Hypernuclei



Goal:

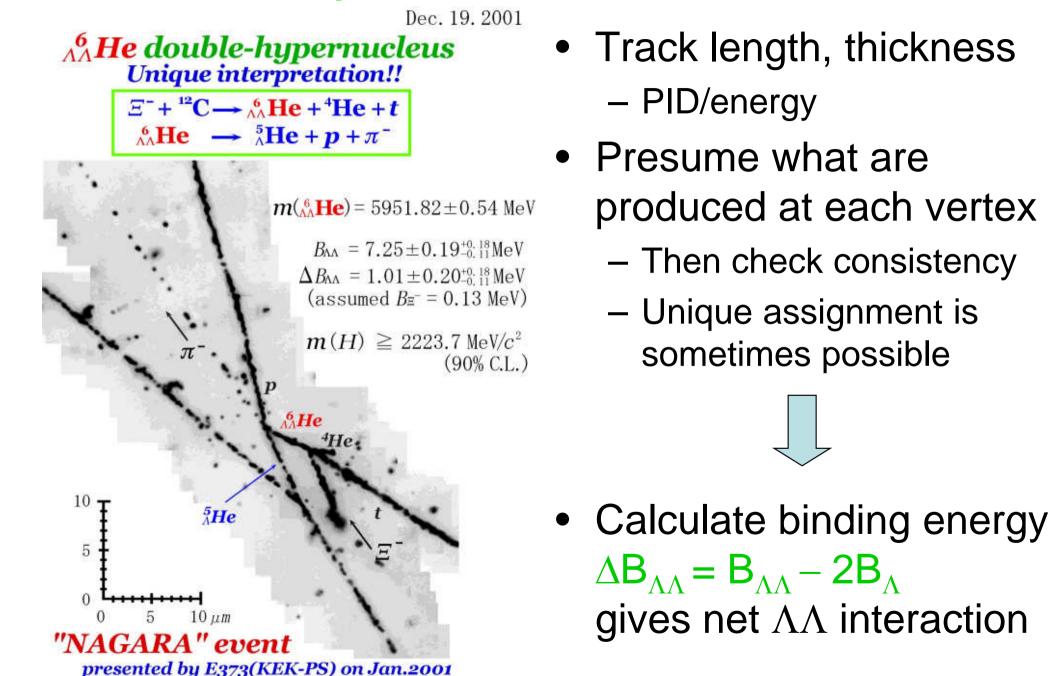
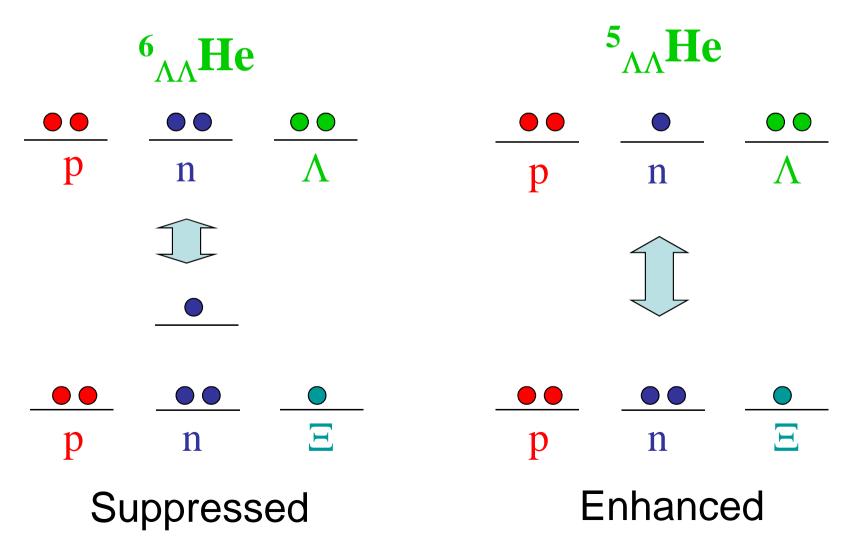

- 10000 stopped
 Ξ⁻ on emulsion
- 100 or more double-Λ HN events
- 10 nuclides

Chart of double-Λ hypernuclei

Production of $\Lambda\Lambda$ hypernuclei



Example event in emulsion

Systematics of $\Lambda\Lambda$ binding energy

- $\Delta B_{\Lambda\Lambda}$ may be different for each nucleus
 - For example by hyperon mixing effect

Summary

- S=-2 studies at J-PARC
 - 3 experiments proposed (and approved) $E05 - Spectroscopy of \Xi$ hypernuclei E03 - X-ray spectroscopy of Ξ atoms E07 - Hybrid Emulsion for double- Λ hypernuclear chart
 - More are to come
- Utilizes the world ever-strongest kaon beam
 - Unique opportunity at J-PARC
- More information on J-PARC:
 - Plenary session talk tomorrow morning (By Prof. Tamura \rightarrow KT will talk on his behalf)