Gain adjustment

• Gain of I, J, O, R, Q bars are set to about 700.

Bar	L HV	R HV
l I	1460	1515
J	1520	1437
0	1475	1413
R	1510	1460
Q	1475	1413

O, R, Q Gain

Q, J, I Gain

About Timing Calibration

•
$$t_1 = t_{real,a} + \frac{x_a}{v_a} + \Delta t_1$$
 where $\Delta t_1 = \Delta t_{cable} + \Delta t_{electronics} + \Delta t_{PMT}$
• $t_2 = t_{real,a} + \frac{L-x_a}{v_a} + \Delta t_2$
• $t_{real,a} = \frac{t_1+t_2}{2} - \frac{\Delta t_1}{2} - \frac{\Delta t_2}{2} - \frac{L}{v_a}$
• Similarly, $t_{real,b} = \frac{t_3+t_4}{2} - \frac{\Delta t_3}{2} - \frac{\Delta t_4}{2} - \frac{L}{v_b}$

About Timing Calibration

- Assume that relative electronic time shifts about a certain channel are always same even though the configuration of bars are changed.
- If one sets Δt_1 as an offset and represent other Δt_i s in terms of Δt_1 , dt between bars can be presented as follows :

•
$$t_{real.a} - t_{real.b} = \left(\frac{t_1 + t_2}{2} - \frac{\Delta t_1}{2} - \frac{\Delta t_1 + s_2}{2} - \frac{L}{v_a}\right) - \left(\frac{t_3 + t_4}{2} - \frac{\Delta t_1 + s_3}{2} - \frac{\Delta t_1 + s_4}{2} - \frac{L}{v_b}\right)$$

= $\frac{t_1 + t_2}{2} - \frac{t_3 + t_4}{2} + \frac{L}{v_a} + \frac{L}{v_b} - \frac{s_2 - s_3 - s_4}{2}$

• No dependence on the offset

About Timing Calibration

- To obtain s_i
- 1st idea : Using function generator
 - -> cannot apply PMT to calibration
- 2nd idea : set bar arrays as follows and use dt between LR PMTs and real dt between bars
- ->Even if we use speed of light, there would be O(1ps) error. (10cm/c) = 333.6 ps , (10cm/0.99c) = 336.9 ps