Seoul National University 09.Aug.2018

- Why UHV is needed
- Preceding Research
- Multi-Ring Electrodes(MRE)
- Cold UHV pipe for the GBAR antiproton trap drawing
- UHV pipe cooling system & Heat Loading

Why UHV is needed

Collision frequency : $\nu_{H_2} = \sigma_{H_2} vn(/s)$

Cross section of hydrogen molecule and antiproton :

J.S. Cohen. Molecular effects on antiproton capture by H_2 and the states of $p\bar{p}$ formed. *Physical Review A*, 56(5):3583, 1997.

Number density of the hydrogen molecules : n = N/V = P/kT

Mean free time($1/v_{H_2}$) of antiproton for several different hydrogen pressures

The vapor pressure of most of the gases can be reduced by cooling the apparatus down to about 10K

Pressure (Pa)

Preceding Research 1 - Cusp Trap

Preceding Research 2 - Musashi Trap

Multi-Ring Electrodes

To make a large number of antihydrogen atom efficiently, trapping and cooling of antiproton beam before the reaction is important. A penning trap composed of high field superconducting solenoid and multi-ring electrodes(MRE) to form a harmonic electric potential is designed.

Multi-Ring Electrodes

In order to cool down antiproton beam, and make ultra-high vacuum lower than 10⁻¹² Torr, temperature u nder 10K is needed. So, Cold UHV chamber at 4.2K temperature is designed.

MRE is in the UHV bore tube, whose length is 1944mm. Cryocooler is installed both side of UHV bore tube, and OVC(outer vacuum chamber) is outside of the bore tube and cryocooler.

Schematic Drawing of the UHV pipe cooling system

Heat Loading

Shield 복사열침입량 계산

온도조건	구분	수치					
	Outer Dismeter	78 mm					
	Inner Diameter	74 mm					
	Length	1230 mm					
50K shield vessel	Temperature (Tc)	50 K					
	material	Cu					
	emissivity (εc)	0.3					
	Outer Dismeter	93 mm					
	Inner Diameter	89 mm					
Vacuum Vacad	Length	1230 mm					
vacuum vessei	Temperature (Th)	300 K					
	material	SUS316L					
	emissivity (ɛh)	0.13					
원주율	л	3.1416					
스테판-볼쯔만 상수	σ	5.67E-08 W/m^2*K^4					
Shield Vessel 표면적	옆	0.30 m2					
	상하	0.01 m2					
	전체 (A)	0.31 m2					
	옆	0.34 m2					
Vacuum Vessel 표면적	상하	0.01 m2					
	전체	0.36 m2					
실효방사율 단열재 효과	E	1.09E-01					
		0.2					
	Q옆 (ɛh로 계산)	17.981 W					
	Q상하 (ɛh로 계산)	0.570 W					
보시여저다란	Q전체 (εh로 계산)	18.552 W					
독사일인일당	Q옆 (E로 계산)	15.037 W					
	Q상하 (E로 계산)	0.477 W					
	Q전체 (E로 계산)	15.514 W					
	Q옆 (ɛh로 계산)	3.596 W					
	Q상하 (ɛh로 계산)	0.114 W					
복사열전달량	Q전체 (εh로 계산)	3.710 W					
단열재효과 반영	Q옆 (E로 계산)	3.007 W					
	Q상하 (E로 계산)	0.095 W					
	Q전체 (E로 계산)	3,103 W					

$$\mathsf{Q} = \sigma * A * E * (T_H^4 - T_C^4)$$

$$E = \frac{1}{\frac{1}{\epsilon_2} + \frac{A_2}{A_1} \left(\frac{1}{\epsilon_1} - 1\right)} = 0.109$$

 $Q_{50K} - Q_{4.2K} =$

 $(5.67 \times 10^{-8}) * (0.31) * (0.109) * (300^4 - 50^4)$

= 15.514

Heat Loading

헬륨조 복사열침입량 계산

Q=σ∗A∗E∗(Th4−Tc4)							
온도조건	구분	수치					
	Outer Dismeter	66 mm					
	Inner Diameter	62 mm					
	Length	1230 mm					
Bore Pipe	Temperature (Tc)	4.2 K					
	material	Cu					
	emissivity (cc)	0.3					
	Outer Dismeter	78 mm					
	Inner Diameter	74 mm					
	Length	1230 mm					
50K Shield	Temperature (Th)	50 K					
	material	Cu					
	emissivity (ch)	0.3					
원주율	π.	3.1416					
스테판-볼쯔만 상수	σ	5.67E-08 W/m^2*K^4					
	옆	0.26 m2					
Lhe Vessel 표면적	표 상하	0.01 m2					
	전체 (A)	0.26 m2					
	옃	0.30 m2					
Shield Vessel 표면적	상하	0.01 m2					
	전체	0.31 m2					
실효방사율	F	1.884E-01					
단열재 효과		0.2					
	O옆 (sh로 계산)	0.027 W					
	Q公하 (sh로 계산)	0.001 W					
	0전체 (sh로 계산)	0.028 W					
복사열전달량	이연 (F로 계산)	0.017 W					
	Q표 (E로 계산)	0.000 W					
	O전체 (F로 계산)	0.017 W					
복사역저닼량	0연 (sh로 계산)	0.005 W					
	Q샆하 (sh로 계산)	0.000 W					
	0전체 (sh로 계산)	0.006 W					
단열재효과 반영	이연 (F로 계산)	0.003 W					
	0 삼하 (F로 계산)	0.000 W					
	O전체 (F로 계산)	0.003 W					
		0.000 W					

$$\mathsf{Q} = \sigma * A * E * (T_H^4 - T_C^4)$$

$$E = \frac{1}{\frac{1}{\epsilon_2} + \frac{A_2}{A_1} \left(\frac{1}{\epsilon_1} - 1\right)} = 0.1884$$

 $Q_{50K} - Q_{4.2K} =$

 $(5.67 \times 10^{-8}) * (0.26) * (0.1884) * (50^4 - 4.2^4)$

= 0.017

Heat Loading

구분		온도(K)		0	열전도율(W/m.K)	Pipe 외경(m)	두께(m)	면적(m2)	전체길이(m)	열부하(W)	수량	총 열부하(W)	비고	
				9	k	OD	t	Α	Lt	Q		Qt		
		Left 측	300	-	50	9.76	0.0532	0.00015	2.49992E-05	0.2	0.304991	1	0.305	
50K	전도	Right 측	300	-	50	9.76	0.077	0.0002	4.82549E-05	0.2	0.588709	1	0.589	
Thermal 합계(전도)									0.894					
shield	보사	표면적	300	-	50								15.514	단열재 효과 무시
· · · · · · · · · · · · · · · · · · ·								15.514						
합계(Total)							16.408							

구분		온도(K)		0	열전도율(W/m.K)	Pipe 외경(m)	두께(m)	면적(m2)	전체길이(m)	열부하(W)	스랴	총 열부하(W)	비고	
				9	k	OD	t	Α	Lt	Q	тð	Qt		
		Left 측	50	-	4.2	3.24	0.0532	0.002	0.000321699	0.144	0.331511	1	0.332	
	전도	Right 측	50	-	4.2	3.24	0.077	0.002	0.000471239	0.144	0.485612	1	0.486	
4.2K 합계(전도)									0.817					
	보사	표면적	50	-	4.2								0.017	단열재 효과 무시
합계(복사)								0.017						
합계(Total)							0.835							

Sumitomo Cryocooler : RDK-415D	2대 적용		
Cooling power@4.2K	3 W		
Cooling power@30K	30 W		

$$Q = \frac{kA(T_H - T_C)}{L_t}$$
$$Q_{300K \ 50K} = 0.894, Q_{50K \ 4.2K} = 0.817$$

Cooling Power @ 4.2K 0.835W < 3W : Enough

Cooling Power @ 30K 16.408W < 30W : Enough

Thank You!