Background Simulation at aMore

5th International Workshop at High-1 (2011/02/08)

Jin Li

SNU

Contents:

- •Energy spectrum simulation for cryogenic detector.
- •Energy deposit signal for signal and background.
- •Light signal.
- Cryostat Design not discussed.

Background spectrum in bolometric detector for 0vDBD search

How to kill Alpha particles?

Scintillating bolometer

For example: CaWO₄ crystal

This Idea brings aMore

Target background level

Many techniques of surface cleaning can reduce the contribution from surface alphas to 5×10^{-2} counts/keV kg y, around the 3 MeV 0vDBD region.

How to simulate the energy spectrum?

- Bulk and surface contamination from chains and and isotopes. (48 Ca in CaMO $_4$ crystal)
- Bulk contamination due to cosmogenic activation.
- Neutron, muon and gamma flux from Lab environment.

We need:

- •Contamination levels for CaMO4 and surrounding Copper, Lead.
- Crystal size.
- •Surface contamination density profile (\sim 1 μ m).
- •Detector assembly structure.
- •Other geometric information.

It can be done in GEANT4.

S.Myung has experience in it.

For example:

Contaminant (ppt)	²³² Th	²³⁸ U	⁴⁰ K
CaMO ₄	0.5	0.1	1
Copper	4	2	1

Example simulation results (CUORE)

Anti-coincidence spectrum

Bulk contamination

Surface contamination

(Assuming 20 times reduction from CUORICINO by using low-radioactive polishing powder for crystal, and low contaminated liquids for copper surface treatment.)

Energy absorption efficiency for signal

V.V. Kobychev has simulated absorption efficiency the with GEANT.

His study shows that the efficiency does not depend much on all reasonable sizes: Efficiency rages within 5% around ε = 84%.

Also, by introducing a concept of skin layer:

The in-efficiency p_L can be parameterized as with a constant skin layer depth d=2.0mm and k=0.0339:

Skin layer volume
$$p_L = k \left(\frac{\delta V}{V}\right)^{0.62}$$
 Total volume

aMore Detector Structure

We can choose any detector array structure. Some considerations:

- ☐ Optimize crystal size.
- ☐ Assemble in basic modules.
- ☐ Both sides of the light detector to detect light signal.
- ☐ Minimize the mass of the frame.
- ☐ Use PTFE or TEFLON stand-offs.

LUCIFER structure

Simulation about the Light signal

Light detection efficiency can also be simulated.

- •Light signal spectrum affects the alpha rejection efficiency.
- •Alpha, muon, β,γ,, may hit the light detector directly.
- •Triple-hit coincidence may reduce the direct-hit background.
- •Also, the light transport inside the crystal.

$$L_Q + L_{Pl}$$

$$20 = 20+0$$

$$20 = 15 + 5$$

$$20 = 10 + 10$$

$$20 = 5 + 15$$

$$20 = 0 + 20$$

$$15 = 15 + 0$$

$$15 = 10 + 5$$

$$15 = 5 + 10$$

$$15 = 0 + 15$$

$$10 = 10 + 0$$

$$10 = 5 + 5$$

$$10 = 0 + 10$$

V. Kobychev's BG simulation

[cm]

CMO: o5.0x5.4 cm; LG o5.0 cm; CsI layer thickness is 9.5 cm

Summary

Contents:

- Energy spectrum simulation for cryogenic detector.
- •Energy deposit signal for signal and background.
- •Light signal.
- •Cryostat Design not discussed.