Nal(TI) crystal characteristics with temperature dependence

CHOI JaeJin^{* 1}, YU Gyunho ², HA Chang Hyon ³, ADHIKARI Govinda ⁴

¹Department of Physics and Astronomy, Seoul National University, ²Department of Physics, Sungkyunkwan University, ³Center for Underground Physics, Institute for Basic Science(IBS), ⁴Department of Physics, Sejong University **On behalf of the COSINE-100 collaboration**

1. Introduction

■ For a direct dark matter detection experiment with NaI(TI) crystals, two major characteristics of the crystals are a high light output and a good pulse shape discrimination (PSD) power among different particles. We installed a 1.2kg test NaI(TI) crystal in a freezer whose temperature can go down to -35 degree Celsius. Energy resolution of the crystal is measured to be 16% at 59.54keV gamma emission from Am-241 with light yield of 10.04±0.24 photoelectron/keV. PSD-separator alpha activity is 0.73±0.16 mBq/kg. Measurements of light yields and PSD powers of the NaI(TI) crystal in different temperatures will be presented.

3. Light Yield Analysis

Using Am-241 source to calculate light yield

- Light Yield [PE/keV] = gamma charge sum / single photoelectron(spe) charge sum/59.54
 - Room temperature energy resolution and light yield

Refrigerator(-33°C)

Nal crystal

- Diameter: 75mm
- Height: 75mm
- Weight: 1.2 ±0.12 kg
- Alpha Activity : $0.73 \pm 0.16 \text{ mBq/kg}$
- We took data at 20°C and -33°C

2. PSD (Pulse Shape Discrimination) Analysis

- Alpha Pulse Shape Discrimination Power
 - Raw Waveform

Low temperature energy resolution and light yield

- height at room temperature is higher than height at low temperature
- wave decay time at room temperature is faster than wave decay time at low temperature

- integration [start to 1.5us] meantime vs adc sum [start to 5us]
- PSD from alpha events and gamma events using meantime variable

• Single photoelectron (SPE) fitting used exponential decay plus poisson distribution

temp	Light yield using Am-241 [spe/keV]			
	PMT 1	PMT 2	Total	
20°C	4.25±0.05	3.63±0.08	7.88±0.09	
-33°C	4.45±0.03	3.77±0.04	8.22±0.05	

- Alpha events from Po-210
- Gamma peak from TI-208 gamma decay(2614 KeV)

Result

temp	FoM of PSD (alpha, gamma)			
	Integration meantime [start to 1us]	Integration meantime [start to 1.5us]	Integration meantime [start to 2us]	
20°C	5.82 <u>+</u> 0.26	6.06±0.27	5.53±0.32	
-33°C	6.03±0.25	7.76±0.36	6.92±0.34	

- PSD power at low temperature is better than PSD power at room temperature
- 28±0.01 % increased

- Light yield in low temperature is higher than light yield in room temperature
- Resolution is similar each other

4. Summary

2019 KPS spring

- Alpha PSD power at low temperature is better than PSD power at room temperature
- Neutron PSD power would be studied
- Light yield in low temperature is higher than light yield in room temperature

Yale

KRISS