20171124 STATUS REPORT

Ahram lee

CERN Data Information

#181

#202

#174

/dataRC_old/

07-21 (3h)

11,528 entries 19,632 entries

518,896 entries

/dataRC/

#48	08-17 ~ 08-18 (2d)	218,112 entries
#76	08-21 ~ 08-22 (2d)	177,860 entries
#120	08-25 ~ 08-29 (4d)	928,000 entries
#151	08-30 ~ 09-06 (7d)	1,502,436 entries
#1/0	bhokim(~10/2)	434,340 entries
#172	bhokim(10/2~)	204,244 entries

4bar trigger, th=200 12bar trigger

6bar trigger, th=100

Time resolution On various positions – analysis method

1. Grouping

2. Region selecting

select the events within +-5cm from the position(X).

3. dT distribution fitting & Reducing

 $\begin{array}{l} \mathrm{d}Tmean_{\alpha}=Tmean_{1}-Tmean_{2}\\ \mathrm{d}Tmean_{\beta}=Tmean_{2}-Tmean_{3}\\ \mathrm{d}Tmean_{\gamma}=Tmean_{3}-Tmean_{1} \end{array}$

or

$$\begin{split} & \mathrm{d}Tfast_{\alpha} = Tfast_1 - Tfast_2 \\ & \mathrm{d}Tfast_{\beta} = Tfast_2 - Tfast_3 \\ & \mathrm{d}Tfast_{\gamma} = Tfast_3 - Tfast_1 \end{split}$$

 $\sigma_{\alpha}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2}$ $\longrightarrow \qquad \sigma_{\beta}^{2} = \sigma_{2}^{2} + \sigma_{3}^{2}$ $\sigma_{\gamma}^{2} = \sigma_{3}^{2} + \sigma_{1}^{2}$

Group1

dTmean distribution fitting results

4

(Time resolution) vs (position)

Run #151, dTmean

dTfast distribution fitting results

6

Time resolution Group fitting results Tmean analysis

run#151

Tmean3 – Tmean1 distribution usually has slightly larger sigma, in each Group, but doesn't look significant.

Run#151_Group2_Tmean

Run#151_Group4_Tmean

Time resolution Group fitting results Tmean analysis

run#170

Tmean3 – Tmean1 distribution usually has slightly larger sigma, in each Group, but doesn't look significant.

Run#170_Group4_Tmean

Time resolution Group fitting results Tmean analysis

run#174

Tmean3 – Tmean1 distribution usually has slightly larger sigma, in each Group, but doesn't look significant.

Run#174_Group2_Tmean

Run#174_Group4_Tmean

Time resolution Group fitting results Tfast analysis

run#151

Tmean3 – Tmean1 distribution usually has a lot bigger than rest.

BUT, near center of counter, (-10cm, 0cm, +10cm) it becomes smaller, while the rests do bigger. Run#151_Group1_Tfast

Run#151_Group2_Tfast

ipos[cm

Run#151_Group3_Tfast

Time resolution Group fitting results Tfast analysis

run#170

Tmean3 – Tmean1 distribution usually has a lot bigger than rest.

BUT, near center of counter, (-10cm, 0cm, +10cm) it becomes smaller, while the rests do bigger.

Run#170_Group1_Tfast

bar 1-2

bar 2-3

bar 3-1

Run#170_Group2_Tfast

Run#170_Group4_Tfast

Time resolution Group fitting results Tfast analysis

run#174

2017-11-10

Tmean3 – Tmean1 distribution usually has a lot bigger than rest.

BUT, near center of counter, (-10cm, 0cm, +10cm) it becomes smaller, while the rests do bigger.

Run#174_Group1_Tfast

bar 1-2

oar 2-3

bar 3-1

60

- bar 1-2

bar 2-3

bar 3-1

80

ipos[cm]

40

20

-20

20

40

60

80

ipos[cm

Run#174_Group2_Tfast

Run#174_Group4_Tfast

Time resolution[ps] 320

350

Time resolution On various angle – analysis method

1. Grouping

3. dT distribution fitting & Reducing

Select events when the angles is within specific range we want.

1. $|\theta| < 45^{\circ}$ 2. $|\theta| > 45^{\circ}$ $\begin{array}{l} \mathrm{d}Tmean_{\alpha}=Tmean_{1}-Tmean_{2}\\ \mathrm{d}Tmean_{\beta}=Tmean_{2}-Tmean_{3}\\ \mathrm{d}Tmean_{\gamma}=Tmean_{3}-Tmean_{1} \end{array}$

Group1

Group2

Group3

Group4

Time resolution

With angle cut

Run #151, Group1, Tmean1 – Tmean3

Time resolution

With angle cut

Run #170, Group1, Tmean1 – Tmean3

Time resolution

With angle cut

Run #174, Group1, Tmean1 – Tmean3

