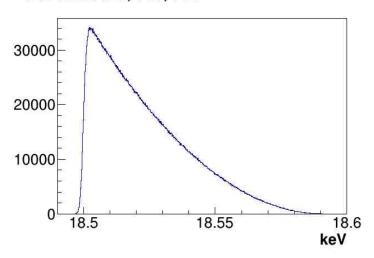
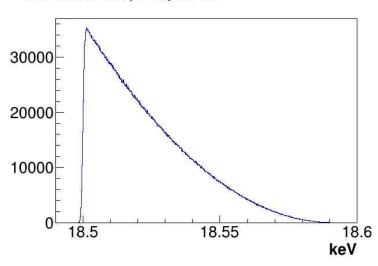

Weekly Report 2018-01-25


Kim, Hanbeom

Geant4 Simulation m_{ν} =1 eV with detector resolution

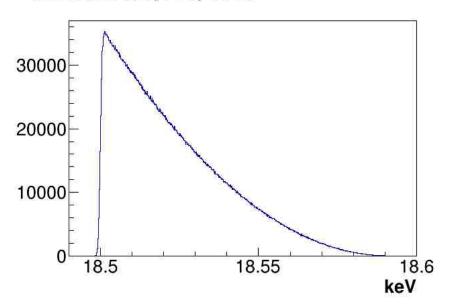


18.5-18.591 keV, 1 eV, 1 eV

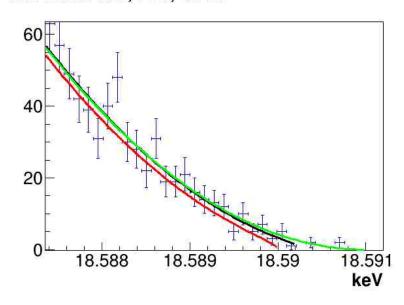
18.5-18.591 keV, 1 eV, 0.5 eV

Simulation Input:

Q=18.591 keV
$$m_{v}$$
=1 eV


Output (from fitting result spectrum): $Q=18.5910 \pm 0.00002 \text{ keV}$ m_{ν} =1.02472 \pm 0.044720 eV

Resolution = 1 eV Q=18.5910
$$\pm$$
 0.00002 keV m_{ν} =0.000066 \pm 73.0844 eV Weird!!

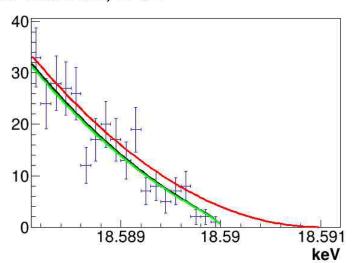

Resolution = 0.5 eV Q=18.5910
$$\pm$$
 0.00002 keV m_{ν} \approx 0.75 eV.....

Geant4 Simulation m_{ν} =1 eV with detector resolution

18.5-18.591 keV, 1 eV, 0.5 eV

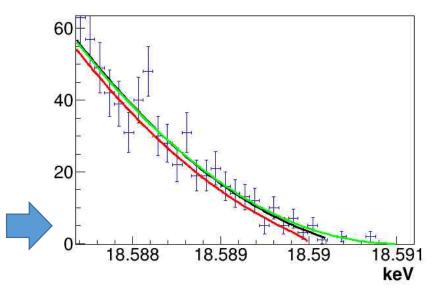
18.5-18.591 keV, 1 eV, 0.5 eV

As the fitting range changes near the endpoint, the error of the mass also changes (but the mean value does not change much).


18.51-18.5900 keV: m_{ν} =0.725922 \pm 0.241754 eV 18.51-18.5902 keV: m_{ν} =0.750794 \pm 0.132226 eV

It seems to need more events.

Geant4 Simulation m_{ν} =1 eV with detector resolution


Near the endpoint:

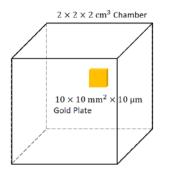
18.5-18.591 keV, 10^7 e-

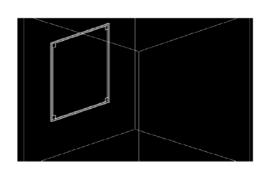
Fitted one and calculated one almost overlap.

18.5-18.591 keV, 1 eV, 0.5 eV

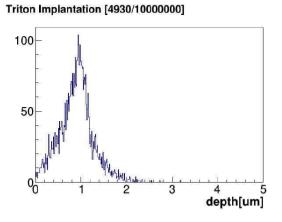
Less similar

Black: fitted spectrum


Green: calculated spectrum with $m_{\scriptscriptstyle \mathcal{V}}$ =0 eV


Red: calculated spectrum with m_{ν} =1 eV

(Colors are different in the previous one.)


We can make another simulation with more events/better resolution.

Geant4 Simulation m_{ν} =1 eV (previous meeting)

 $4930/10^7$

19 out of 10⁸ electrons throughout the spectrum are between 18.5 and 18.591 keV.

We have an error scale of \sim 0.01 eV with 10^7 electrons in the range of $18.5\sim18.591$ keV.

For an error scale of ~0.01 eV, # of implanted 3 H decay: ~5·10 13 # of 3 He(n,p) 3 H nuclear reaction need = ~10 17

Event rates

$$A_{Bq}=nN_Arac{\ln(2)}{t_{1/2}}$$

$$t_{\frac{1}{2}} = 12.32 \text{ yr} = 3.89 \times 10^8 \text{ s}$$

# of implanted ³ H decay (one sensor?)	Mass/g	Frequency/Hz	Fall time
~5·10 ¹³	2.49×10^{-13}	89.1 (~ 0.1k)	~ 10 ms
~5.6·10 ¹⁵	2.8×10^{-11}	10k	100 μs

More events are allowed, so the expected resolution can be higher.

Relic neutrino events

Isotope	Decay	$Q_{\beta} \; (\text{keV})$	${\it Half-life (sec)}$	$\sigma_{\text{NCB}}(v_{\nu}/c) \ (10^{-41} \ \text{cm}^2)$	
$^3\mathrm{H}$	β^-	18.591	3.8878×10^{8}	7.84×10^{-4}	- Rate ≈ 75 yr ⁻¹ kg ⁻¹
⁶³ Ni	β^-	66.945	3.1588×10^{9}	1.38×10^{-6}	nate / e y. na
$^{93}{ m Zr}$	β^-	60.63	4.952×10^{13}	$2.39 imes 10^{-10}$	
$^{106}\mathrm{Ru}$	β^-	39.4	3.2278×10^{7}	$5.88 imes 10^{-4}$	
$^{107}\mathrm{Pd}$	β^-	33	2.0512×10^{14}	2.58×10^{-10}	
$^{187}\mathrm{Re}$	β^-	2.64	1.3727×10^{18}	4.32×10^{-11}	_
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}	
^{13}N	β^+	1198.5	5.99×10^2	$5.3 imes 10^{-3}$	
^{15}O	β^+	1732	$1.224 imes 10^2$	$9.75 imes 10^{-3}$	
$^{18}{ m F}$	β^+	633.5	6.809×10^3	$2.63 imes 10^{-3}$	
$^{22}\mathrm{Na}$	β^+	545.6	9.07×10^7	3.04×10^{-7}	A. Cocco, G. Mangano, and M. Messina,
$^{45}\mathrm{Ti}$	β^+	1040.4	$1.307 imes 10^4$	$3.87 imes 10^{-4}$	hep-ph/0703075 (2007).

PTOLEMY: 100 g -> \sim 8 events/yr