Status report (3 Aug. 2016)

Jongwon Hwang

Simulation: Charged Pion

- Checked the geometrical eff. of charged pions from the anti-proton.
- anti-proton in the Chamber Top (I = 30 mm) & Bottom (I = 3 mm) (SUS)
 - Number of generated ones: about three pi⁺⁻
 - Top / Bottom: Different result
 - Top detector height dependency exists (not so much).

Simulation: Charged Pion

Simulation: Neutral Pion

- Checked the geometrical eff. of neutral pions from the anti-proton.
- Actually, checked the efficiency of gamma rays from the pions.
- anti-proton in the Chamber Top (I = 30 mm) & Bottom (I = 3 mm) (SUS)
 - All pi⁰ decay around the anti-proton.
 - Many gamma rays stop in the chamber.
 - Top / bottom and top detector height dependency exists.

Simulation: Neutral Pion

Simulation: Neutral Pion

- Studied the system using more than 1 FADC module.
- "How does the trigger system work?"
- Checked the details of MTCBIBS (the module for sync.).

What to do

MTCBIBS: Control all modules (setting, start, stop, ···)

FADC: Store data,
Send them to PC

- Successful to take data with using two modules of FADC.
 - 2 plastic bars (4 channels) / 2 PWO triggers (2 channels)
 - Data are still being taken.
- Modify the code to make a root tree from raw data.
 - Can manage any number of channels.
 - Merge into one root tree. [(New Ch ID) = ((Module ID) 1) x 4 + (Ch ID)]