
The problem of local optima

• Almost local optima in high dimension is a saddle point.

• But such bad optima can escape if the network is big enough.

• The problem of plateaus

• Derivative is almost zero.

• Learning speed decreases.

• Adam, RMSProp -> Change the direction



Tensorflow

• Example

• J(w) = w^2 -10w +25

• Finding minimum w = 5 from tensorflow

• Similar technic can be applied to real problem.



Tensorflow example

• w = tf.Variable(0,dtype=tf.float32)

• cost = tf.add(tf.add(w**2,tf.multiple(-10,w)),25)

• train = tf.train.GradientDescentOptimizer(0.01).minimize(Cost)

• init = tf.global_variables_initializer()

• session = tf.Session()

• session.run(init)

• session.run(w)



Tensor flow example

• For i in range(1000):

session.run(train)

print(session.run(w))

Result : 4.99999



Tensorflow

• Define only forward propagation then tensorflow will 
calculate back-prop automatically. (In add, multiply, square)

• Only define cost function.

• We can use operater overloading ( w**2-10*w+25 )



Tensorflow
• coefficient = np.array([[1.][-10.][25.]])

• x = placeholder(tf.float(32),[3,1]) -> Give data later

• cost = x[0][0]*w**2-x[1][0]*w+w[2][0]

• session.run(train, feed_dict=(x:coefficient))

• Such a way, we can feed the training data.



Why ML Strategy?
• more data

• more diverse training set

• Train longer

• Adam (better algorithms)

• bigger network

• smaller network

• dropout

• L2 regularization

• Network architecture

• What is efficient ????



Orthogonalization 
• One button -> Only one option
• One dimension change -> No change in other dimensions

• Chain of assumptions in ML
• Tune to fit training set
-> Bigger network, Adam(optimization algorithms)
• Tune to fit development set
-> Regularization, bigger training set
• Tune to fit test set
-> Bigger development set
• Real world
-> Change development set or cost function

Early training mix the orthogonalized dimensions.


