Development of CaMoO$_4$ crystal scintillators for a double beta decay experiment with 100Mo

aMoscow Steel and Alloy Institute, 119049 Moscow, Russia
bInstitute for Nuclear Research, MSP 03680 Kyiv, Ukraine
cDMRC and School of Physics, Seoul National University, Seoul 151-742, Republic of Korea
dPhysics Department, Kyungpook National University, Daegu 702-701, Republic of Korea
eSejong University, Seoul, Republic of Korea
fInstitute for Theoretical and Experimental Physics, 117218 Moscow, Russia
gInstitute for Nuclear Problems, 220030 Minsk, Belarus
hInstitute for Materials, 79031 Lviv, Ukraine

Received 11 July 2007; received in revised form 11 September 2007; accepted 25 October 2007
Available online 5 November 2007

Abstract

We have studied the energy resolution, α/β ratio, temperature dependence of the scintillation properties, and the radioactive contamination of CaMoO$_4$ crystal scintillators. We have also examined the use of pulse-shape discrimination to distinguish γ rays and α particles. A high sensitivity experiment to search for the 0ν2β decay of 100Mo using CaMoO$_4$ scintillators is discussed.

© 2007 Elsevier B.V. All rights reserved.

PACS: 23.40.–s; 29.40.Mc

Keywords: Double beta decay; Scintillation detector; CaMoO$_4$ crystals; Pulse-shape discrimination; Radiopurity

1. Introduction

It has been already demonstrated by several experiments that scintillation detectors are a promising tool to search for the double beta (2β) decay processes; some examples of their application can be found in Refs. [1–10]. Scintillation detectors possess a range of important characteristics for a high sensitivity 2β decay experiment: high registration efficiency for 2β processes, reasonable energy resolution, the potential to use pulse-shape discrimination to reduce the background, operating stability, and low cost. There exists a few detector materials containing molybdenum. The most promising of them, from the point of view of light output, is calcium molybdate (CaMoO$_4$). In Ref. [11] CaMoO$_4$ crystal scintillators were proposed to search for the neutrinoless (0ν) 2β decay of 100Mo. Recently CaMoO$_4$ has been intensively studied for possible use in a cryogenic scintillation-bolometric detector for experiments to search for 2β decay and dark matter [12–17]. 100Mo is one of the most promising candidates for 2β decay experiments because of its high transition energy ($Q_{2\beta} = 3035$ keV). As a result, the calculated value of the phase space integral $G_{\text{mm}}^{0\nu}$ of the 0ν2β decay of 100Mo is one
of the largest among 35 possible $2\beta^-$ decay candidates \cite{18,19}. Theoretical predictions for the product of the half-life and the squared effective neutrino mass $\tau_{1/2}^T (m_\nu)^2$ are in the range of 8.0×10^{22}–4.1×10^{24} yr eV2 (see compilations \cite{20} and more recent calculations \cite{21}). Further, from an experimental point of view, the larger is the $Q_{2\beta}$ energy, the simpler it is to overcome background problems, in particular, because the background from natural radioactivity drops sharply above 2615 keV, the energy of γ’s from 208Tl decay (232Th family). In addition, cosmogenic activation, which is important for the next generation of 2β decay experiments (see, for instance \cite{23}), contributes less at higher energies.

Two neutrino double beta decay ($2\nu 2\beta$) of 100Mo to the ground state of 100Ru has already been observed in several direct detection experiments \cite{24,25} with measured half-lives in the range of 3.3×10^{18}–1.2×10^{20} yr; the most recent value from the NEMO-3 experiment is based on 219,000 detected $2\nu 2\beta$ events and is equal to $T_{1/2} = 7.1 \pm 0.5 \times 10^{18}$ yr \cite{25}. Geochemical measurements gave the value of $T_{1/2} = 2.2 \pm 0.3 \times 10^{18}$ yr \cite{26}. In addition to transition to the ground state, the $2\nu 2\beta$ decay of 100Mo to the first excited 0$^+$ level of 100Ru ($E_{\text{exc}} = 1131$ keV) has also been observed; measured values of half-lives are in the range of $(5.7–9.3) \times 10^{20}$ yr \cite{27}. New studies of this mode are also in progress \cite{28}. The neutrinoless 2β decay has yet not been observed: the best limit, reached in the NEMO-3 experiment is $T_{1/2} > 4.6 \times 10^{23}$ yr at 90% C.L. \cite{25}.

The purpose of our work was investigation of the energy resolution, light yield, x/β ratio, pulse shapes (for γ rays and α particles), temperature dependence of the scintillation properties, and the pulse-shape discrimination ability of a few samples of CaMoO$_4$ crystal scintillators produced by the Institute for Materials (IM, Lviv, Ukraine), and by the Innovation Centre of the Moscow Steel and Alloy Institute (ICMSAl, Moscow, Russia). Radioactive contamination of four samples of CaMoO$_4$ crystals was tested in the Solovtina Underground Laboratory.

2. Samples

The main properties of CaMoO$_4$ scintillators are presented in Table 1, where the characteristics of calcium and cadmium tungstates are also given for comparison. The material is non-hygroscopic and chemically resistant. Five clear, practically colourless CaMoO$_4$ crystals were used in our studies. The scintillators were fabricated from single crystals grown by the Czochralski method. All crystals used in the present study are listed in Table 2. The samples CMO-2, CMO-3, and CMO-4 have not exactly cylindrical shape. For this reason the mass of the crystals are slightly different.

Table 1

Properties of CaMoO$_4$, CaWO$_4$, and CdWO$_4$ crystal scintillators

<table>
<thead>
<tr>
<th></th>
<th>CaMoO$_4$</th>
<th>CaWO$_4$ \cite{29}</th>
<th>CdWO$_4$ \cite{30}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>4.2–4.3 \cite{31}</td>
<td>6.1</td>
<td>8.0</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>1445–1480</td>
<td>1570–1650</td>
<td>1325</td>
</tr>
<tr>
<td>Structural type</td>
<td>Scheelite \cite{33}</td>
<td>Scheelite</td>
<td>Wolframite</td>
</tr>
<tr>
<td>Cleavage plane</td>
<td>Weak (001)</td>
<td>Weak (1 0 1)</td>
<td>Marked (0 1 0)</td>
</tr>
<tr>
<td>Hardness (Mohs)</td>
<td>3.5–4</td>
<td>4.5–5</td>
<td>4–4.5</td>
</tr>
<tr>
<td>Wavelength of emission maximum (nm)</td>
<td>520 \cite{11}</td>
<td>420–440</td>
<td>480</td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.98 \cite{31}</td>
<td>1.94</td>
<td>2.2–2.3</td>
</tr>
<tr>
<td>Effective average decay timea (μs)</td>
<td>14</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Photoelectron yield [% of NaI(Tl)b]</td>
<td>9%</td>
<td>18%</td>
<td>20%</td>
</tr>
</tbody>
</table>

aFor γ rays, at room temperature.

3. Measurements and results

3.1. Energy resolution and relative light output

In the present work, the energy resolution was measured for all the CaMoO$_4$ samples.

The CaMoO$_4$ crystal (CMO-4) was roughened on the side surface using fine grinding paper, the exit and top surfaces were polished. The scintillator was wrapped with PTFE reflector tape and optically coupled to a 3 in. Philips XP2412 photomultiplier (PMT). The measurements were carried out with a home-made spectroscopy amplifier with 16 μs shaping time to collect most of the charge from the anode of the PMT. The scintillator was irradiated by γ quanta from 137Cs, 207Bi, 232Th, and 241Am sources. Energy resolutions (full width at half maximum, FWHM) of 34% (241Am, 60 keV), 10.3% (137Cs, 662 keV), 7.7% (208Bi, 1064 keV), and 4.7% (208Tl, 2615 keV) were measured (see Fig. 1). The energy resolution obtained in the present study is the best ever reported for CaMoO$_4$ crystal scintillators. It is important to stress that the clear peak of the 2615 keV γ line of 208Tl (232Th source) was measured. It demonstrates a possibility to calibrate the energy scale of a CaMoO$_4$ detector in the vicinity of the expected peak of $0\nu 2\beta$ decay of 100Mo using a 226Th source.

The dependence of the energy resolution and light output on the surface treatment was checked with the sample CMO-5. First, all surfaces of the crystal were polished. An energy resolution of 16.2% was measured in these conditions for the 137Cs 662 keV γ line. Then the surface of the crystal, except the exit window connected to the PMT, was roughened with fine-grained grinding paper. The relative pulse amplitude increased by 1.21 times and the energy resolution improved to 14.0%.

The relative light output of the CaMoO$_4$ crystal (CMO-4) was measured relatively to the CaWO$_4$ scintillator.
The light output of the CMO-4 scintillator was measured relatively to a NaI(Tl) scintillator of standard assembly. To account for the substantial difference in the scintillation decay times of CaMoO$_4$ (14 ms) and NaI(Tl) (0.25 ms), the energy spectra were built by calculating the areas of pulses (over 300 ms for CaMoO$_4$ and 6 ms for NaI(Tl)) accumulated using a 20 MS/s transient digitizer based on the 12 bit ADC (AD9022) [34]. The photoelectron yield of 8% relatively to NaI(Tl) was obtained for the CMO-4 sample.

3.2. α/β ratio

The α/β ratio was measured with the CMO-1 crystal using collimated α particles of a 241Am source. The dimensions of the collimator were $\varnothing 0.75 \times 2$ mm. As it

Table 2

Samples of CaMoO$_4$ crystal scintillators used in this study and their scintillation properties

<table>
<thead>
<tr>
<th>ID</th>
<th>Size (mm)</th>
<th>Mass (g)</th>
<th>Manufacturer</th>
<th>Relative pulse amplitude (%)</th>
<th>FWHM at 662 keV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMO-1</td>
<td>$25 \times 13 \times 9$</td>
<td>11.5</td>
<td>IMa</td>
<td>100</td>
<td>12.8b</td>
</tr>
<tr>
<td>CMO-2</td>
<td>$\varnothing 38 \times 20$</td>
<td>95.6</td>
<td>IMa</td>
<td>103</td>
<td>12.5c</td>
</tr>
<tr>
<td>CMO-3</td>
<td>$\varnothing 38 \times 20$</td>
<td>99.9</td>
<td>IMa</td>
<td>110</td>
<td>11.9d</td>
</tr>
<tr>
<td>CMO-4</td>
<td>$\varnothing 38 \times 20$</td>
<td>97.8</td>
<td>IMa</td>
<td>118</td>
<td>10.3e</td>
</tr>
<tr>
<td>CMO-5</td>
<td>$28 \times 28 \times 24$</td>
<td>82.5</td>
<td>ICMSAId</td>
<td>79</td>
<td>14.0f</td>
</tr>
</tbody>
</table>

aInstitute for Materials (Lviv, Ukraine).
bExit surface (coupled to PMT) was polished; other surfaces were diffused.
cExit and opposite surfaces were polished; side surface was diffused.
dInnovation Centre of the Moscow Steel and Alloy Institute (Moscow, Russia).

Fig. 1. Energy spectra of 137Cs (a), 241Am (b), 207Bi (c), and 232Th (d) γ quanta measured with CaMoO$_4$ scintillation crystal $\varnothing 38 \times 20$ mm (CMO-4).
was checked by a surface-barrier detector, the energy of \(\alpha \) particles was reduced to about 5.25 MeV by 2 mm of air due to passing through the collimator [35]. Fig. 2 shows the energy spectrum of the \(\alpha \) particles measured by the CaMoO\(_4\) scintillator. The \(\alpha / \beta \) ratio is 0.20 at the energy of \(\alpha \) particles 5.25 MeV.

Besides the measurements with the external source, \(\alpha \) peaks of \(^{220}\text{Rn}\) and \(^{216}\text{Po}\) (from the \(^{232}\text{Th}\) chain), and \(^{210}\text{Po}\) and \(^{214}\text{Po}\) (\(^{238}\text{U}\)), present in trace amounts in the CaMoO\(_4\) crystal (\(\varnothing 38 \times 20\) mm, CMO-2), were used to extend the energy range of \(\alpha \) particles. The peaks of \(^{220}\text{Rn}\), \(^{216}\text{Po}\), and \(^{214}\text{Po}\) were selected with the help of the time–amplitude analysis of data obtained in the low background measurements (see Section 3.6.3). The peak of \(^{210}\text{Po}\) is clearly present in the energy spectrum of the CaMoO\(_4\) detector (Section 3.6.2). The measured dependence of the \(\alpha / \beta \) ratio on the energy of \(\alpha \) particles (Fig. 3) can be described in the energy region 5–8 MeV by the linear function: \(\alpha / \beta = 0.11(2) + 0.019(3)E_\alpha \), where \(E_\alpha \) is energy of \(\alpha \) particles in MeV. The \(\alpha / \beta \) ratio measured with external \(\alpha \) source is lower than those obtained with internal \(\alpha \)'s. It can be explained by some difference in light collection from the \(^{241}\text{Am}\) source (placed on the top of the crystal) in comparison with uniformly distributed scintillations from internal \(\alpha \) decays, effect of surface treatment, etc.

As the quenching of the scintillation light caused by \(\alpha \) particles (in comparison with electrons) is due to the higher ionization density of \(\alpha \) particles, such a behaviour of the \(\alpha / \beta \) ratio can be explained by the energy dependence of ionization density of \(\alpha \) particles [36].

3.3. Pulse shape for \(\gamma \) rays and \(\alpha \) particles

The pulse shapes measured using the CaMoO\(_4\) scintillator (CMO-1) were studied using the 12 bit 20 MS/s transient digitizer. To study the pulse shape of scintillation decay for \(\alpha \) particles, the CaMoO\(_4\) crystal was irradiated by \(\alpha \) particles from collimated \(^{241}\text{Am}\) source. A \(^{60}\text{Co}\) source was used to investigate pulse shape for \(\gamma \) quanta. These measurements were carried out at the temperature (27 \(\pm \) 1) °C.

The shape of the light pulses produced by \(\alpha \) particles and \(\gamma \) rays in the CaMoO\(_4\) scintillator are shown in Fig. 4. To obtain the pulse shapes, about 1000 of individual \(\alpha (\gamma) \) events with amplitudes corresponding to the \(\alpha \) peak of \(^{241}\text{Am}\) were summed. The pulses were fitted by the function:

\[
f(t) = \sum A_i (e^{-t/\tau_i} - e^{-t/\tau_0}) / (\tau_i - \tau_0), \quad t > 0
\]

where \(A_i \) are the relative intensities, \(\tau_i \) are the decay constants for different light-emission components, and \(\tau_0 \) is integration constant of the electronics (\(\tau_0 \approx 0.08 \mu s \)). Three decay components were observed with \(\tau_1 \approx 0.3 - 1 \mu s \), \(\approx 4 \mu s \), and \(\approx 17 \mu s \) with different intensities for \(\gamma \) rays and \(\alpha \) particles (see Fig. 4 and Table 3).

Fig. 2. The energy spectrum measured with 5.25 MeV \(\alpha \) particles from an \(^{241}\text{Am}\) source (dots). Fit of the \(\alpha \) peak is shown by solid line.

Fig. 3. Dependence of the \(\alpha / \beta \) ratio for CaMoO\(_4\) on the energy of \(\alpha \) particles.

Fig. 4. Decay of scintillation in a CaMoO\(_4\) crystal for \(\gamma \) rays and \(\alpha \) particles. Three components of scintillation signals for \(\alpha \) particles with decay constants of 1, 4, and 17 \(\mu s \) are shown. Fitting functions for \(\alpha \) and \(\gamma \) pulses are drawn by solid lines.
The decay constants and their relative intensities are denoted as τ_1 and A_i, respectively.

3.4. Pulse-shape discrimination between γ rays and α particles

The difference between the pulse shapes allows us to discriminate $\gamma(\beta$) events from those induced by α particles. We applied for this purpose the optimal filter method proposed in Ref. [37], and successfully used for different scintillation detectors: CdWO$_4$ [30,34], CeF$_3$ [7], CaWO$_4$ [29], YAG:Nd [38], ZnWO$_4$ [9], CaF$_2$(Eu) [39], and PbWO$_4$ [40]. For each CaMoO$_4$ signal, a numerical characteristic (shape indicator, SI) was calculated in the following way:

$$\text{SI} = \sum f(t_k)P(t_k)/\sum f(t_k)$$

where the sum is over time channels k, from the origin of pulse and up to 50 μs, $f(t_k)$ is the digitized amplitude (at the time t_k) of the signal. The weight function $P(t)$ was defined as: $P(t) = f_s(t) - f_i(t)/f_s(t) + f_i(t)$, where $f_s(t)$ and $f_i(t)$ are the reference pulse shapes for α particles and γ quanta.

Reasonable discrimination between α particles and γ rays was achieved using this approach, as one can see in Fig. 5 where the scatter plot of the shape indicator versus energy measured with the CaMoO$_4$ crystal CMO-1 for α particles ($E_2 \approx 5.25$ MeV) and γ quanta (≈ 1 MeV) are shown. As a measure of discrimination ability (factor of merit, FOM), the following expression can be used:

$$\text{FOM} = |\text{SI}_\alpha - \text{SI}_\gamma|/\sqrt{\sigma_\alpha^2 + \sigma_\gamma^2},$$

where SI_α and SI_γ are mean SI values for α particles and γ quanta distributions (which are well described by Gaussian functions), σ_α and σ_γ are the corresponding standard deviations. For the distributions presented in inset of Fig. 5, the factor of merit FOM = 2.2.

3.5. Temperature dependence of light output and pulse shape

The temperature dependence of the scintillation properties was studied in the range $-158 \div +25$ $^\circ$C with the CMO-1 sample. The crystal was viewed by the XP2412 PMT through a high purity quartz light-guide 4.9 cm in diameter and 25 cm long. The CaMoO$_4$ scintillator and the light-guide were wrapped with PTFE tape as a reflector. Dow Corning Q2-3067 optical couplant was used to provide optical contact of the scintillator with the light-guide, and of the light-guide with the PMT. The crystal and the main part of the light-guide were placed into a Dewar vessel, while the PMT was isolated from the vessel with the help of a foam plastic plate. This way the temperature of the PMT was kept stable (practically at room temperature) during the measurements. The Dewar vessel was periodically filled by small portions of liquid nitrogen to cool the detector. The temperature of the crystal was measured with a chromel–alumel thermocouple.

To measure the relative light output and pulse shape, the scintillator was irradiated by α particles from the collimated 241Am source ($E_3 = 5.25$ MeV). The 20 MS/s transient digitizer was used to accumulate 4000 scintillation pulse shapes of CaMoO$_4$ at each temperature. Then the recorded pulse shapes were used to build energy spectra and to determine the decay time. The energy spectra were obtained by calculating the area of each signal from the starting point up to 380 μs.

To present the dependence of scintillation decay of CaMoO$_4$ on temperature, we use the averaged decay time $\langle \tau \rangle$ determined by the following formula:

$$\langle \tau \rangle = \sum (\tau_i A_i)/\sum A_i.$$
shown by filled circles (see text).

Data corrected to account for the decay time of the scintillation signals are presented in inset of Fig. 6. All three decay components increase with decrease of the temperature. Such a behaviour is in agreement with the results recently obtained in Ref. [41].

The measured dependence of the relative light output of the CaMoO$_4$ crystal scintillator on the temperature is presented in Fig. 6(b). The relative light output (RLO) increases as the temperature decreases down to $\sim -50^\circ$C as

$$\text{RLO} = 1.374(16) - 0.0137(8) \times T - 0.00005(3) \times T^2,$$

where T is temperature in $^\circ$C. Then some decrease of the scintillation intensity was observed. The dependence is in agreement with the result obtained in Ref. [11].

The temperature dependence of the radioluminescence intensity was also studied using the photon counting method. The dependence was measured in the temperature range -170°C to $+40^\circ$C under γ-excitation by a 57Co source. Light from the sample was directed to the PMT (FEU-100) input window through a condenser. The 57Co source was installed at 8 cm distance from the sample. The PMT counting rate was averaged during 10 s at each value of the temperature. The dependence of the luminescence yield is presented in Fig. 7. It was found that as the temperature decreases down to -80°C, the light yield increases by a factor of 2.5. The light yield remains practically unchanged as the temperature decreases further to -170°C.

The difference in the temperature dependence of the light yield measured by two methods can be explained by the considerable increase of the scintillation decay time at temperatures lower than $\sim -50^\circ$C. Whereas the result of the photon counting method does not depend on the decay time, the relative light output measured using the transient digitizer depends on the kinetics of scintillation decay. To correctly calculate area of scintillation signals, the digitized pulses after 380 μs were reconstructed with the exponential function $f(t) = ae^{-t/\tau_1}$, with $\tau_1 = \tau_3$, and amplitude a being a free parameter of the fit. After this effect was taken into account, the behaviour of the relative pulse amplitude measured with the help of the digitizer (the corrected data are presented in Fig. 6(b) by filled circles) are practically the same as measured with the photon counting method. The obtained data are in accordance with behaviour measured in Refs. [41,42].

3.6. Radioactive contamination

3.6.1. Set-up and measurements

The radiopurity of four samples (CMO-2, CMO-3, CMO-4, and CMO-5) was tested in the Solotvina Underground Laboratory built in a salt mine 430 m underground (≈ 1000 m of water equivalent) [43].

The crystals CMO-2, CMO-3, and CMO-4 were produced from a single boule with the aim of studying a possible dependence of radioactive contamination on the length of the boule. Such a dependence was observed for CdWO$_4$ crystals produced for the Solotvina experiment to search for 2β decay of 116Cd [44]. The crystal CMO-2 was cut from the top of the boule (beginning of growth), the CMO-3 was taken from the middle part, and the CMO-4 sample was produced from the bottom part of the monocrystal boule.

The radioactive contamination of the CaMoO$_4$ crystals was measured in the low background set-up installed in the Solotvina Underground Laboratory. In the set-up a scintillation CaMoO$_4$ crystal was viewed by the
The solid lines represent the fit of the data to the background spectrum. The energy scale of the detectors was calibrated using a 207Bi γ source through the calibration channel made in the shield. The typical energy resolution of the CMO-2 crystal was FWHM 17.8% and 13.5% for 570 and 1064 keV γ lines, respectively.

3.6.2. Interpretation of background spectrum

The energy spectrum of the CMO-2 detector measured over a 74.83 h period in the low background set-up is presented in Fig. 8. The peak at energy ≈ 1.17 MeV can be attributed to intrinsic 210Po (daughter of 210Pb from the 238U family) with activity of 0.42(1) Bq/kg. Apparently, the equilibrium of the uranium chain in the crystal was broken during crystal production, because in the spectrum there is no peak of 238U expected at the energy of ≈ 0.82 MeV.

Analysis of the spectrum gives only a limit for the activity of 235U on the level of ≤ 0.5 mBq/kg. The peaks of the daughters 224U, 233Th, and 228Ra cannot be resolved (their Q_e values are very close). A total α peak is expected at energy ≈ 1 MeV. A fit of the spectrum gives only a limit for the total activity of these isotopes at the level of 2.8 mBq/kg. In the same way the following limits on the activities of 222Rn, 218Po, and 235Th were obtained: ≤ 4.4, ≤ 4.2, and ≤ 0.7 mBq/kg, respectively.

To account for the presence in the crystal of β active isotopes (daughters of 232Th, 40K, 90Sr + 90Y), the energy spectrum of the CaMoO$_4$ detector was simulated with the GEANT4 package [45]. The initial kinematics of particles emitted in β decays of nuclei were generated with the DECAY0 event generator [46]. The spectrum of the CMO-2 crystal (Fig. 8) was fitted in the energy interval 0.4–3 MeV by the model, which includes the simulated distributions of U/Th daughters (208Tl, 212Bi \rightarrow 212Po, 210Bi, 214Bi \rightarrow 214Po, 234U$^{\alpha}$) 90Sr $+$ 90Y. Gaussian function to describe the α peak of 210Po, and an exponential function to take into account the external γ background. Parameters of the exponential function were bounded taking into account the background of the CdWO$_4$ crystal scintillator 0.448 kg of mass measured in the set-up [29]. The main components of the background are shown in Fig. 8. Most of the β activity can be ascribed to 210Bi, daughter of 210Pb (≈ 0.4 Bq/kg). We cannot exclude presence of significant activity of 90Sr $+$ 90Y in the crystal. However, there are no clear peculiarities in the spectrum which can be used to prove the presence of these nuclides. Therefore, we can only give limits on activities of 90Sr $+$ 90Y and 210Bi in the crystal at the level of ≤ 62 and ≤ 398 mBq/kg, respectively.

3.6.3. Time-amplitude analysis

The raw background data were analysed using the time-amplitude method, where the energy and arrival time of each event are used to select some decay chains in the 232Th and 238U families. For instance, the following sequence of α decays from the 232Th family was searched for and observed: 220Rn ($Q_a = 6.41$ MeV, $T_{1/2} = 55.6$ s) \rightarrow 216Po ($Q_a = 6.91$ MeV, $T_{1/2} = 0.145$ s) \rightarrow 212Pb. These radionuclides are in equilibrium with 228Th from the 232Th family. Because the energy of the α particles from 220Rn decay corresponds to ≈ 1.5 MeV in the γ scale of the CaMoO$_4$ detector, the events in the energy region 1.4–2.2 MeV were used as triggers. Then all events (within 1.4–2.2 MeV) following the triggers in the time interval 0.02–0.6 s (containing 84% of 210Po decays) were selected. The obtained α peaks are in agreement with those expected for α particles of 220Rn \rightarrow 216Po \rightarrow 212Pb chain [47]. Pulse-shape analysis confirms the events were caused by α particles. On this basis, despite low statistics, the activity of 210Bi, 90Sr + 90Y, 208Tl + 212Bi \rightarrow 212Po, and 234Pa + 214Bi \rightarrow 214Po) are shown.

The technique of a time-amplitude analysis of background data to recognize the presence of the short-lived chains from 232Th, 235U, and 238U families is described in [5,44].
228-Th in the CaMoO4 crystal can be calculated as 0.23(10) mBq/kg.

Similarly, for the analysis of the 226Ra chain (238U family) the following sequence of β and α decays was used: 214Bi (Qβ = 3.27 MeV) → 214Po (Qα = 7.83 MeV, T1/2 = 164 μs) → 210Pb. For the first event the lower energy threshold was set at 0.25 MeV, while for the events of the α decay of 214Po the energy window 1.4–4 MeV was chosen. The events were selected in the time interval 100–800 μs (55% of 214Po decays). The registration efficiency for events of 214Bi was calculated with the help of the GEANT4 code as 85%. The obtained spectra (Fig. 9) lead to the 226Ra activity in the CaMoO4 crystal equal to 2.1(4) mBq/kg.

The results obtained with time–amplitude analysis do not contradict the results of the analysis described in Section 3.6.2 if one takes into account the broken equilibrium of 232-Th and 238U chains.

We estimated the radioactive contamination in other crystals in the same way as described above. A summary of the measured radioactive contamination of the CaMoO4 scintillators (or limits on their activities) is given in Table 4, again in comparison with CaWO4 [29] and CdWO4 detectors [3,6,48,49].

One can see that the levels of radioactive impurities in the CaMoO4 crystals are comparable with those in CaWO4 crystals, and are much higher (by factor of 10–103) than those in the CdWO4 scintillators. The radioactive contamination of the CaMoO4 crystal produced in the Innovation Centre of Moscow Steel and Alloy Institute is lower than that of the scintillators produced in the Institute for Materials. Some indication that the radioactive contamination in the crystal volume increased during the growth process was observed with the samples CMO-2, CMO-3, and CMO-4 produced from the same crystal boule.

4. High sensitivity 100Mo 0ν2β experiment with CaMoO4 detectors

Below we discuss the possible use of CaMoO4 scintillators as detectors in a search for the neutrinoless 2β decay of 100Mo. Because of the “source = detector” approach (which provides high efficiency for detection of the process), good energy resolution and the pulse-shape discrimination ability (which allows us to reduce the background), CaMoO4 scintillators could be considered as a promising tool in a 100Mo 0ν2β experiment. To estimate the sensitivity of the experiment, in the following we present calculations of some backgrounds from cosmogenic activities induced in CaMoO4 crystals, as well as from internal pollution by the U/Th chains, and from the two neutrino 2β decays of 100Mo and 40Ca. A natural composition of Ca and O, and 100% enrichment in 100Mo is supposed.

The finite energy resolution of the CaMoO4 detector not only causes a broadening of 100Mo 0ν2β peak, but also results in presence of events from tail of the 2ν2β distribution in the peak’s region. This background is unavoidable because it is caused by 100Mo itself; it could be minimized only by improvement of the energy resolution of the detector. The response functions of CaMoO4 for two neutrino and neutrinoless 2β decays of 100Mo are

Fig. 9. The energy distributions for the fast sequence of the β (214Bi) and α (214Po) decays selected from the background data by the time-amplitude analysis. (Inset) The time distribution between the first and second events together with an exponential fit. The obtained half-life of 214Po (190 ± 44 μs) is in agreement with the table value (164 μs) [47].

Table 4
Radioactive contaminations in CaMoO4, CaWO4, and CdWO4 crystal scintillators

<table>
<thead>
<tr>
<th>Source</th>
<th>Activity (mBq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMO-2</td>
</tr>
<tr>
<td>232-Th</td>
<td>≤0.7</td>
</tr>
<tr>
<td>228-Th</td>
<td>0.23(10)</td>
</tr>
<tr>
<td>238U</td>
<td>≤0.5</td>
</tr>
<tr>
<td>226Ra</td>
<td>2.1(4)</td>
</tr>
<tr>
<td>210Pb</td>
<td>≤398</td>
</tr>
<tr>
<td>210Po</td>
<td>420(10)</td>
</tr>
<tr>
<td>40K</td>
<td>≤1.1</td>
</tr>
<tr>
<td>90Sr</td>
<td>≤62</td>
</tr>
</tbody>
</table>
of 0.187% \cite{50}. The event rate caused by 48Ca 2β decay by two PMTs through light-guides made of CsI(Tl). 3 Another possible solution could be light-guides made of PbWO 4.

The expected backgrounds from internal U/Th chains and cosmogenic activities, we additionally suppose the use of an active shield made of CsI(Tl) scintillators. Radiopure CsI(Tl) scintillators were developed by the KIMS collaboration for the dark matter experiments in the Yangyang Laboratory \cite{51}. In simulations, the CaMoO 4 crystal \(\varnothing 45 \times 45 \text{ mm} \) was placed in the centre of \(\varnothing 40 \times 40 \text{ cm} \) CsI(Tl) scintillation detector. CaMoO 4 was viewed by two PMTs through light-guides also made of CsI(Tl). Such an active shield suppresses internal and external backgrounds related with the emission of \(\gamma \) quanta. The contribution from cosmic ray particles in the course of measurements could be effectively suppressed by running the experiment at a deep underground site.

Only two isotopes in the U/Th chains have enough energy to produce a background in the region of the 0\(\nu \)2β peak of \(^{100}\text{Mo} \): \(^{208}\text{Ti} \) (\(Q_\beta = 5001 \text{ keV} \) \cite{47}) and \(^{214}\text{Bi} \) (\(Q_\beta = 3272 \text{ keV} \)).\footnote{\(^{210}\text{Pb} \) is also present with \(Q_\beta = 5489 \text{ keV} \) but the yield of this isotope in \(^{238}\text{U} \) chain is only 0.021%.
}

\(\beta \) decay of \(^{208}\text{Ti} \) is accompanied by emission of one or more \(\gamma \) quanta, and thus it is effectively eliminated by the CsI(Tl) active shield. \(\beta \) decay of \(^{214}\text{Bi} \) is more dangerous because it has a 18.2% branch to the ground state of \(^{214}\text{Po} \) without the emission of any \(\gamma \)'s and with \(Q_\beta = 3272 \text{ keV} \). However, this contribution could be further suppressed by \(\simeq 1 \) order of magnitude by checking for the fast \(\alpha \) decay of \(^{214}\text{Po} \) (\(T_{1/2} = 164.3 \mu s \)) during the subsequent \(\simeq 1 \text{ ms} \) and proving its \(\alpha \) nature with pulse-shape analysis. Contributions from \(^{208}\text{Ti} \) and \(^{214}\text{Bi} \) are shown in Fig. 11 for 0.1 mBq/kg activity. It is clear that they are not very dangerous in comparison with \(^{48}\text{Ca} \) 2\(\beta \) decay because comparative or better CaMoO 4 crystals have already been obtained (CMO-5 in Table 4: 0.04 mBq/kg for \(^{208}\text{Ti} \) and 0.13 mBq/kg for \(^{214}\text{Bi} \)).

Cosmogenic activities produced by cosmic rays in CaMoO 4 crystal during its time production period at the Earth surface were calculated with the COSMO code \cite{53}. An activation time of 30 days at sea level, and a deactivation time of 1 year underground were assumed. The most dangerous cosmogenic nuclides—with energy close to or higher than the \(Q_\beta \) of \(^{100}\text{Mo} \) and noticeable yield—are summarized in Table 5. Simulations with GEANT4 \cite{45} and initial kinematics given by the DECAY0 event generator \cite{46} showed that the contributions from cosmogenic activities are small in comparison with the 2\(\nu \)\(\beta \) decay of \(^{48}\text{Ca} \) (see Fig. 11 for \(^{48}\text{Y} \)).

To estimate the sensitivity of the experiment to \(^{100}\text{Mo} \) 0\(\nu \)\(\beta \) decay in terms of the potential half-life limit, we can use known formula: \(\lim T_{1/2} = \ln 2 \cdot N \cdot S \cdot t / \lim \eta, \) where \(\eta \) is the detection efficiency, \(N \) is the number of \(^{100}\text{Mo} \) nuclei, \(t \) is the measuring time, and \(\lim S \) is the maximum number of 0\(\nu \)\(\beta \) events which can be excluded with a given confidence level on the basis of the experimental data or simulated background. It is interesting to consider here only the unremovable backgrounds from the 2\(\nu \)\(\beta \) decays of \(^{48}\text{Ca} \) and \(^{100}\text{Mo} \) itself, neglecting all other external and internal backgrounds (which could be effectively suppressed by the active CsI(Tl) shield).

Supposing measurements with 1 kg CaMoO 4 scintillator during 1 year, we will have 1.41 (0.06) events from the 2\(\nu \)\(\beta \) decay of \(^{48}\text{Ca} \) (\(^{100}\text{Mo} \)) inside the 4\% 1 FWHM interval centred at the \(^{100}\text{Mo} \) \(Q_\beta \) energy. In the absence of other contributions, with 1 (or 2) events measured and an expected background of 1.47 events, in accordance with the Feldman–Cousins procedure \cite{54}, value of \(\lim S \) is equal to 2.9 (4.4) at 90\% C.L. Taking into account that this interval contains 0.761 of the full \(^{100}\text{Mo} \) 0\(\nu \)\(\beta \) peak, it gives a

![Fig. 10. The response functions of a Ca^{100}MoO_4 detector for 2\(\beta \) decays of \(^{100}\text{Mo} \) for \(T_{1/2}(2\nu) = 7 \times 10^{18} \text{ yr} \) (solid lines) and \(T_{1/2}(0\nu) = 1 \times 10^{24} \text{ yr} \) (dashed lines) for different energy resolutions of the detector at the energy of \(^{100}\text{Mo} \) 0\(\nu \)\(\beta \) decay.](image-url)
Table 5
Cosmic radioactivity induced in Ca100MoO$_4$ crystals, assuming a 30 days exposure to cosmic rays at the sea level and 1 yr period of cooling down in underground conditions

<table>
<thead>
<tr>
<th>Isotope or chain of decays</th>
<th>$T_{1/2}$</th>
<th>Decay mode and Q value (keV)</th>
<th>D_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>22Na</td>
<td>2.6 yr</td>
<td>EC 2842</td>
<td>8.99</td>
</tr>
<tr>
<td>42Ar and 42K</td>
<td>32.9 yr</td>
<td>β^- 3525</td>
<td>0.80</td>
</tr>
<tr>
<td>56Co</td>
<td>77.3 d</td>
<td>EC 4565</td>
<td>0.01</td>
</tr>
<tr>
<td>60Co</td>
<td>5.3 yr</td>
<td>β^- 2824</td>
<td>2.08</td>
</tr>
<tr>
<td>68Ge and 68Ga</td>
<td>270.8 d</td>
<td>EC 2921</td>
<td>0.90</td>
</tr>
<tr>
<td>88Y</td>
<td>106.7 d</td>
<td>EC 3623</td>
<td>20.69</td>
</tr>
</tbody>
</table>

D_3 is number of decays during the first 5 years of data taking per kg of the crystal.

half-life limit as: $T_{1/2}(0\nu)>5.4 \times 10^{23}(3.5 \times 10^{23})$ yr. Thus, comparatively modest efforts with a 1 kg crystal (which contains near 490 g of 100Mo) and a 1 yr measurement time could give an interesting $T_{1/2}$ limit comparable to the recent value from the NEMO-3 experiment: 4.6×10^{23} yr [25] obtained with 7 kg of 100Mo after 389 d of data taking.

The final aim of the NEMO-3 experiment ($T_{1/2}(0\nu)>2 \times 10^{24}$ yr) could be achieved with a Ca100MoO$_4$ scintillator with statistics of 10 kg yr, i.e. also in a middle-scale experiment. However, further improvement will be difficult task: the half-life limit of 10^{25} yr could be reached only with 200 kg yr statistics. More sensitive searches for 100Mo $0\nu\beta\beta$ decay will evidently need the depletion of Ca in 48Ca.\footnote{Only 20 years ago, before the first laboratory observation of $2\nu\beta\beta$ decay in 1987, it was difficult to imagine that this rarest observed natural process could be a serious background in searches for even rarer decays.}

CaMoO$_4$ crystals could also be used as scintillating bolometers [17]. In this case energy resolution will be much better ($\simeq 5$ keV instead of $\simeq 120$ keV for 4%) that results in a clearer interpretation of the backgrounds and a higher sensitivity of an experiment. Two neutrino 2β decay of 100Mo will not contribute anymore to the $0\nu\beta\beta$ peak. With background only from $2\nu\beta\beta$ decay from non-depleted 48Ca, the following half-life limits could be reached (at 90\% C.L.): 6.5×10^{23}, 4.1×10^{24}, and 4.2×10^{25} yr for 1, 10 and 200 kg yr statistics, respectively. Statistics of 1000 kg yr would correspond to $T_{1/2}(0\nu)>1.1 \times 10^{26}$ yr. In accordance with the NME calculations for 100Mo $0\nu\beta\beta$ decay [20,21], it will give a sensitivity on the effective neutrino mass in the range of 0.03–0.20 eV.

A R&D programme with the aim to developing low-background, high resolution scintillation detector for an experiment to search for the $0\nu\beta\beta$ decay of 100Mo with a sensitivity at the level of 10^{25} yr is in progress. For this purpose we intend to produce larger CaMoO$_4$ crystals up to 45 mm in diameter and up to 80–100 mm in length.

5. Conclusions

The scintillation properties and the radioactive contamination of CaMoO$_4$ crystals produced by the Institute for Materials (Lviv, Ukraine), and by the Innovation Centre of Moscow Steel and Alloy Institute (Moscow, Russia) have been studied.

The energy resolutions 10.3\% and 4.7\% for the 662 and 2615 keV γ lines were obtained with the CaMoO$_4$ sample of $\Theta 38 \times 20$ mm produced by the Institute for Materials. The photoelectron yield of CaMoO$_4$ at room temperature was measured as 36\% of CaWO$_4$, and $\approx 8\%$ of NaI(Tl).
The α/β ratio was measured with α particles from a 241Am α source, and internal U/Th contamination.

Three components of the scintillation decay ($\tau_i \approx 0.3 - 1$, ≈ 4 and ≈ 17 μs at the temperature 27°C) and their intensities under α particles and γ quanta irradiation were measured. Some difference in pulse shapes allows to discriminate α particles and γ quanta with reasonable efficiency.

The temperature dependence of the light output and pulse shape was measured in temperature range $-175 \div +40^\circ$C. At approximately -50°C the light output increases ≈ 2 times compared to the light output at room temperature.

The radioactive contamination of CaMoO$_4$ crystals was estimated in low background measurements carried out in the Solotvina Underground Laboratory. CaMoO$_4$ scintillators produced in the Institute for Materials (Lviv, Ukraine) show a significant contamination by uranium and thorium (particularly by 210Po at the level of $\approx 0.4 - 0.5$ Bq/kg). The contamination of the CaMoO$_4$ crystal produced by the Innovation Centre of the Moscow Steel and Alloy Institute (Moscow, Russia) is 1–2 orders of magnitude better. It was found that the equilibrium in the uranium chains is broken in CaMoO$_4$ crystals. Some indication that the level of radioactive contamination in the crystal volume increased during the growth process was observed.

Perspectives for a high sensitivity experiment to search for the $0\nu2\beta$ decay of 100Mo are discussed. The energy resolution of 4–5% is enough to reach a sensitivity at the level of 10^{25} yr. The contamination of crystals by 226Ra and 232Th should not exceed the level of 0.1 mBq/kg. The two neutrino 2β decay of 48Ca restricts the sensitivity of an experiment to search for the $0\nu2\beta$ decay of 100Mo using CaMoO$_4$ crystal scintillators. A possible solution would be to produce CaMoO$_4$ scintillators from Calcium depleted in 48Ca. A further improvement of sensitivity could be achieved by using CaMoO$_4$ crystals as scintillating bolometers.

Acknowledgements

Work of A.N. Annenkov, O.A. Buzanov, V.N. Kornoukhov, M. Korchik, and O. Missevitch was supported in part by ISTC project #3293 in collaboration with the Dark Matter Research Center and School of Physics of Seoul National University, Republic of Korea. F.A. Danevich, V.V. Kobychev, V.M. Kóminka, S.S. Nagorny, A.S. Nikolaiko, D.V. Poda, R.B. Podviyanuk, D.J. Sedlak, O.G. Shkulkova, V.I. Treytak, S.S. Yurchenko were supported in part by the Project “Kosmomikrofizyka” (Astroparticle physics) of the National Academy of Sciences of Ukraine. We acknowledge S. Henry for his remarks regarding this manuscript.

References

[40] L. Bardelli et al., arXiv:0706.2422[nucl-ex];
[41] V.B. Mikhailik et al., Nucl. Instr. and Meth. A, 2007, in press,
 Symposium on Underground Physics, Baksan Valley, USSR, August
 (2000) 1282;
 V.I. Tretyak, to be published.